discs
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
discs [2013/08/30 20:38] – justin | discs [2013/11/04 10:35] (current) – removed justin | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Discs ====== | ||
- | These mock data are designed to mimic the Milky Way disc - either locally or globally. Key questions include, for the local problem: | ||
- | |||
- | (1) What quality of data are required to determine the local dark matter density? (2) Do multiple populations (e.g. split by abundance/ | ||
- | |||
- | And for the global problem: | ||
- | |||
- | (1) Can global models simultaneously recover the disc phase space distribution function and the gravitational potential? (2) What are the key degeneracies in the problem and how can these be broken? | ||
- | |||
- | If posting new tests, please try to approximately follow the template set out for the " | ||
- | |||
- | **Key working group coordinator: | ||
- | |||
- | ---- | ||
- | |||
- | ===== Local models/ | ||
- | |||
- | These mock data give positions and velocities for stars in and around the Solar neighbourhood, | ||
- | |||
- | ==== Simple 1D data sampled from a distribution function of vertical energy ==== | ||
- | |||
- | These first data assume a 1D population with precisely zero " | ||
- | |||
- | * The importance of systematic errors due to over-restrictive assumptions about the potential; | ||
- | * The role of sampling - i.e. how many stars are needed for what type of error; | ||
- | * The importance of having different populations split by chemistry (and the errors introduced if we get this wrong); | ||
- | * The importance of sampling high or low as compared to the disc plane; and | ||
- | * The role of uncertainties in the baryonic mass model | ||
- | |||
- | We use a disc model: | ||
- | |||
- | < | ||
- | $\nu(z) = \exp(-z/ | ||
- | </ | ||
- | |||
- | and vertical force law: | ||
- | |||
- | < | ||
- | $K_z = -\left[\frac{K z}{\sqrt{z^2 + D^2}} + 2Fz\right]$ | ||
- | </ | ||
- | |||
- | The vertical velocity dispersion (assuming no tilt) can be derived from the Jeans equations: | ||
- | |||
- | < | ||
- | $\sigma_z^2(z) = \frac{1}{\nu(z)} \int_0^z \nu(z' | ||
- | </ | ||
- | |||
- | where < | ||
- | |||
- | < | ||
- | $f(E_z) = -\frac{1}{\pi}\int_{E_z}^{\infty} \frac{\mathcal{F}(\Phi) d\Phi}{\sqrt{2(\Phi - E_z)}}$ | ||
- | </ | ||
- | |||
- | where: | ||
- | |||
- | < | ||
- | |||
- | This is made more numerically tractable by the trigonometric substitution: | ||
- | |||
- | < | ||
- | |||
- | which gives: | ||
- | |||
- | < | ||
- | $f(E_z) = \frac{-\sqrt{2 E_z}}{\pi} \int_{0}^{\pi/ | ||
- | </ | ||
- | |||
- | We set up several models by drawing stars from the above distribution function. These are detailed in the following table. For completeness I list also the normalisation constant for the Jeans equation solution < | ||
- | |||
- | ^ Model ^ Parameters ^ Data files ^ Plots ^ | ||
- | | Simple | < | ||
- | | Simplelow | As Simple, above, but with < | ||
- | | Simple2 | < | ||
- | | Simplecomb | Combined simple and simple2 data | {{: | ||
- | | High | As Simple2, above, but with <z_0 = 0.65\,{\rm kpc}</ | ||
- | |||
- | where < | ||
- | |||
- | The data files are as follows: | ||
- | * simplenu_sigz_bin.dat :: Binned data: < | ||
- | * simplenu_sigz.dat :: Smooth model | ||
- | * simplenu_sigz_raw.dat :: Raw particle data in < | ||
- | * simple.png :: Plots of the above. | ||
- | |||
- | The system of units is kpc, Msun, km/s. Converting the vertical force to a surface density (< | ||
- | |||
- | < | ||
- | \Sigma_z(z) = \frac{|K_z|}{2\pi G_1} | ||
- | </ | ||
- | |||
- | where: | ||
- | |||
- | < | ||
- | |||
- | ==== Results so far ==== | ||
- | |||
- | //Simple// code by Justin Read. Results will be published in a forthcoming review article. Details to follow shortly. | ||
- | |||
- | |||
- | ---- | ||
- | |||
- | ===== Global models with known background potential ===== | ||
- | |||
- | N-body disc models simulated with GCD+ ([[http:// | ||
- | |||
- | < | ||
- | where:\\ | ||
- | < | ||
- | < | ||
- | < | ||
- | and:\\ | ||
- | < | ||
- | |||
- | We assume < | ||
- | A live N-body disc is initially set up and simulated for several Gyr. The data file provides the position, velocity and mass of the disc particles. If you have any question, please email [[< | ||
- | |||
- | ASCII data file format:\\ | ||
- | | ||
- | ... format(7(1pE13.5)) | ||
- | |||
- | x,y,z ... position (kpc)\\ | ||
- | | ||
- | mp ... particle mass (Msun)\\ | ||
- | |||
- | ^ Model ^ Description ^ < | ||
- | | GD1 | Smooth disc | 1.75e12 | 20 | 99,9982 | {{: | ||
- | | GD2 | Barred disc | 2.0e12 | 9 | 1,000,000 | {{: | ||
- | |||
- | |||
- | |||
- | ==== Error added data ==== | ||
- | Additionally, | ||
- | |||
- | The errors are computed following [[http:// | ||
- | |||
- | The sun is located at (-8,0,0) kpc in cartesian coordinates. (Note that this does not take into account extinction) | ||
- | |||
- | ASCII data file format and units:\\ | ||
- | {{: | ||
- | |||
- | ^ Model ^ Description ^ < | ||
- | | GD2 | M0 tracer Barred disc w & w/o error | 2.0e12 | 9 | 1,000,000 | {{: | ||
- | | GD1 | Smooth Red Clump w & w/o error | 1.75e12 | 20 | 999,987 | {{: | ||
- | | GD2 | barred Red Clump w & w/o error | 2.0e12 | 9 | 1,000,000 | {{: | ||
- | |||
- | For the GD1-RC stars for the challenge, the velocity of the sun w.r.t the GC is (0, 228.14, 0) km/s with the sun again at (-8,0,0) kpc. | ||
- | ==== Publication policy ==== | ||
- | |||
- | If using these test data, please cite the Gaia Challenge wiki and [[http:// | ||
- | |||
- | |||
- | ==== Results ==== | ||
- | |||
- | ==== Challenge suggested by Jason Hunt ==== | ||
- | |||
- | * First simple challenge can be recovering the surface density profile, mean rotation velocity profile and velocity dispersion profile as a function of radius from a partial data (e.g. using the particle data within 10 kpc from (x, | ||
- | * Recovering the surface density profile, mean rotation velocity profile and velocity dispersion profile as a function of radius from the error added data. | ||
- | === Hunt === | ||
- | |||
- | To start things off, we show the results of our Particle-by-particle M2M algorithm (PRIMAL) when applied to the barred galaxy target above with and without error. We start from a smooth disc with a different scale length, and recover the target while using the 10 kpc sphere of observation around the sun as suggested above. | ||
- | |||
- | Without error, it is easy to recover the radial profiles for the density, radial and vertical velocity dispersions, | ||
- | |||
- | With error however things become more difficult. As a work in progress we are modifying PRIMAL to work with data containing error, and we show our best attempt so far in Fig. 2. We are happy with the density profile but we are continuing to make improvements to the algorithm to allow us to better recover the velocity profiles. | ||
- | |||
- | ^ Code ^ Test ^ ASCII data ^ Plots ^ | ||
- | | PRIMAL (Hunt et. al) | GD2 | coming soon! | Fig. 1: Without Error \\ {{:gb.jpg}} | Fig. 2: With Error \\ {{: | ||
- | |||
- | |||
- | ==== Challenge A (see below) ==== | ||
- | |||
- | === Bovy === | ||
- | |||
- | See his presentation | ||
- | |||
- | | ||
- | |||
- | === Chemin === | ||
- | |||
- | See his presentation {{: | ||
- | |||
- | | ||
- | |||
- | |||
- | ----- | ||
- | |||
- | |||
- | |||
- | |||
- | ===== Analytic global models with a known distribution function and background potentials | ||
- | |||
- | N-body representations of an analytical distribution function of the form used by [[http:// | ||
- | |||
- | The particles are tracers (zero mass), and the data files provide their exact positions and velocities (x, | ||
- | |||
- | {{: | ||
- | |||
- | {{: | ||
- | |||
- | |||
- | ===== Analytic models with known df - Red Clump test ===== | ||
- | |||
- | Again, N-body representations in the same two potentials - the distribution function is slightly more complicated. Data represent red clump stars (all having intrinsic G=1, V-I=1), with data including uncertainties as per those expected from Gaia, so if G>16, the radial velocity is unknown __**(N.B. unknown radial velocities are quoted as 0 with uncertainty given as -1)**__ | ||
- | |||
- | Data format: gzipped space separated ascii, with explanation in header line (behind a # symbol): | ||
- | |||
- | RA(radians) dec(radians) true_parallax(mas) true_mu_a*(mas/ | ||
- | |||
- | (78 Mb each, {{: | ||
- | |||
- | The Sun is placed at x=8kpc, y=0, z=0. The Sun's velocity with respect to the Galactic Centre is vR = -11.1 km/s, vz = 7.25 km/s and vphi = -258.7 km/s for model H or -249.5 km/s for model G. | ||
- | ==== Publication policy ==== | ||
- | |||
- | If using these test data, please cite the Gaia Challenge wiki and [[http:// | ||
- | |||
- | |||
- | ==== Results ==== | ||
- | |||
- | ==== Challenge A (see below) ==== | ||
- | |||
- | === Bovy === | ||
- | |||
- | See his presentation. | ||
- | |||
- | |||
- | ~~DISCUSSION: | ||
- | |||
- | ----- | ||
- | ===== Full N-body models (with local cuts) ===== | ||
- | |||
- | These are full collisionless N-body simulations. The first two were published and analysed in [[http:// | ||
- | |||
- | There are four simulations: | ||
- | |||
- | ^ Simulation ^ Description ^ Data files ^ | ||
- | | UnEvol | Unevolved disc | {{: | ||
- | | Evol | Evolved disc (has spiral arms and a weak bar) | {{: | ||
- | | LoI | Low inclination merger (has weak dark disc) | {{: | ||
- | | HiI | High inclination merger (has flare/warp) | {{: | ||
- | |||
- | Each .tar bundle contains: | ||
- | |||
- | * densityfalloff_dm/ | ||
- | * surfacedensity_bar/ | ||
- | * velocity dispersion :: As above for the stellar velocity dispersion in the z-direction (perpendicular to the disc). | ||
- | * wedges :: Raw unbinned ASCII data for different wedges cut around the disc as in [[http:// | ||
- | * *.txt.gz :: Raw ASCII data for the entire centred and aligned simulations (excluding the accreted satellite stars and dark matter). **Warning**: | ||
- | |||
- | |||
- | ==== Publication policy ==== | ||
- | |||
- | If using these test data, please cite the Gaia Challenge wiki, [[http:// | ||
- | |||
- | ---- | ||
- | |||
- | ===== N-body models from Elena D' | ||
- | |||
- | Snapshots provided by Elena D' | ||
- | |||
- | The galaxy model consists of an Hernquist | ||
- | 9.5x10^11 Msun computed at a radius of 160 kpc. The halo is | ||
- | simulated with a rigid potential. The concentration of the halo | ||
- | is adopted to be c=9 for an Hernquist profile which is approximately like | ||
- | c=12 for a NFW profile. The spin parameter of the halo is lambda=0.033. | ||
- | This galaxy contains a live stellar disk and a little live bulge that made | ||
- | more stable the disk: | ||
- | |||
- | Disk: | ||
- | |||
- | The disk fraction is: Mdisk/ | ||
- | The scale length is 2.5 kpc. | ||
- | We introduced perturbers corotating with the stellar disk as softened | ||
- | particles (the total number of perturbers is 1000 and each has a mass of | ||
- | 9.5x10^5 Msun so that the total mass of the perturbers | ||
- | which is ~2.5% of the total disk mass). In the run we fixed the softening | ||
- | of the perturbes with size of giant a molecular cloud: | ||
- | In the initial setup the vertical thickness of the disk is setup z0=0.1 of | ||
- | the scale length. | ||
- | Number of particles in the disk= 100 millions. | ||
- | In gadget snapshot stellar disk particles are type 2. | ||
- | |||
- | Bulge: | ||
- | |||
- | The bulge fraction is: 0.01. | ||
- | The size is 0.1 of the disk scale length. | ||
- | Number of particles in the bulge is : 10 millions. | ||
- | In gadget snapshot bulge particles are type 3. | ||
- | |||
- | The particles that mimic the perturbers are 1000 and in gadget are type 4. | ||
- | |||
- | Q parameter is initially set up to be larger than 1.3 at all radii. | ||
- | |||
- | ==== Publication policy ==== | ||
- | |||
- | If using these test data, please cite the Gaia Challenge wiki and [[http:// | ||
- | |||
- | ---- | ||
- | ===== Test particles data (Barred potential) ===== | ||
- | |||
- | Data provided by UB team (Romero-Gomez et al.). | ||
- | The simulation is described {{: | ||
- | |||
- | |||
- | Ascii file: 21635205 Red Clump particles with Grvs< | ||
- | |||
- | -In each row: | ||
- | |||
- | G ,Grvs ,Xreal (Kpc),Yreal (Kpc),Zreal (Kpc), | ||
- | |||
- | -Positions and velocities are galactocentric. | ||
- | -The Sun is placed at (-8.5, | ||
- | |||
- | -data format: (2(f7.3, | ||
- | |||
- | -Real values = without errors | ||
- | -Obs values = with Gaia errors | ||
- | |||
- | Also available (not in the ascii file): | ||
- | |||
- | -Av ,V ,V-I ,GL ,GB ,dist ,xmuls ,xmub ,VR ,GLOBS ,GBOBS ,distobs ,xmulsobs ,xmubobs ,VROBS ,sigalpha ,sigdelta ,sigpi ,sigmua ,sigmud ,sigvr | ||
- | |||
- | -The full sample without the cut at Grvs< | ||
- | |||
- | |||
- | **The simulation data is too large to upload it to the twiki. We can provide it in a USB stick or you can find it at google drive: https:// | ||
- | |||
- | |||
- | ==== Results ==== | ||
- | |||
- | ==== Challenge B (see below) ==== | ||
- | |||
- | Input bar pattern speed: $\Omega_p=50$ km/s/kpc | ||
- | |||
- | ==== Monari ==== | ||
- | |||
- | V$_{\phi}$ vs. V$_R$ map at the various location, and looking for OLR feature. | ||
- | {{: | ||
- | Using flat circular velocity curve model (v0), and $\Omega_p$ as free parameters I get $v0\sim210$ km/sec and $\Omega_p\sim$50km/ | ||
- | {{: | ||
- | |||
- | ==== Pfenniger ==== | ||
- | |||
- | - Based on the usual Fourier decomposition in rings | ||
- | |||
- | - Based on moment of inertia | ||
- | |||
- | - (semi-local TW method) | ||
- | |||
- | {{: | ||
- | |||
- | Conclusion: a not too wrong value 35-42 [km/s/kpc] is found around 4-5 kpc, with a systematic | ||
- | lower value for the data with noise in both the moment of inertia and the Fourier methods. | ||
- | However, the inner (0-2 kpc) values are very noisy, and no obvious plateau in R is found. | ||
- | |||
- | |||
- | |||
- | |||
- | ---- | ||
- | |||
- | ===== Victor Debattista' | ||
- | |||
- | This is the Milky Way scaled version of Model R1 of [[http:// | ||
- | |||
- | ^ Model ^ Description ^ Data file ^ | ||
- | | Moderl R1 | Barred N-body simulation | [[http:// | ||
- | |||
- | ==== Publication policy ==== | ||
- | |||
- | If using these data, please cite the Gaia Challenge wiki and | ||
- | [[http:// | ||
- | |||
- | ----- | ||
- | |||
- | ===== Discussion on 19-23 Aug, 2013 ===== | ||
- | |||
- | These are ideas and initial results of the challenges discussed in the Surrey workshop week. However, please feel free to post your mock data, grab the data and do your own challenge. Please also feel free to discuss off-line and build up collaborations. | ||
- | |||
- | ==== Aim: ==== | ||
- | |||
- | | ||
- | |||
- | | ||
- | |||
- | |||
- | ===== Challenge A: ====== | ||
- | |||
- | |||
- | |||
- | ==== Who expressed their interests in participating ==== | ||
- | |||
- | Bovy, McMillan, Chemin, Hunt, Buedenbender, | ||
- | |||
- | ==== Challenge ==== | ||
- | |||
- | deriving 3D force fields from the mock data: measure force in 3D, F$_R$, F$_{\phi}$, F$_z$ as a function of R, $\phi$, z grid points | ||
- | |||
- | |||
- | ==== Grid ==== | ||
- | |||
- | Grid in Galactic R, $\phi$, z | ||
- | |||
- | R: 3-20 kpc in radius | ||
- | | ||
- | |z|: 0-4 kpc | ||
- | | ||
- | | ||
- | | ||
- | | ||
- | | ||
- | ==== mock data: ==== | ||
- | |||
- | | ||
- | |||
- | | ||
- | |||
- | ==== input data: ==== | ||
- | |||
- | - heliocentric equatorial coordinate: R.A. DEC, parallax, proper motion (mas/yr), radial velocity (km/s) | ||
- | |||
- | - position and motion (w.r.t. GC) of the Sun (R$_{Sun}$=8 kpc, z=0) | ||
- | |||
- | - selection function | ||
- | |||
- | * RC tracer, solar metallicity with and without Gaia error G < 20. | ||
- | |||
- | * Use radial velocity data for only G_RVS < 17 | ||
- | | ||
- | * RC stars: M_G=1 mag, V-I=1.0, sig M_G=0 | ||
- | | ||
- | * no extinction | ||
- | | ||
- | ==== data format: ==== | ||
- | |||
- | ascii data | ||
- | |||
- | |||
- | ===== Challenge B: ===== | ||
- | |||
- | ==== Who expressed their interests in participaiting ==== | ||
- | |||
- | | ||
- | |||
- | ==== Challenge ==== | ||
- | |||
- | | ||
- | |||
- | |||
- | |||
- | ==== Mock Data ==== | ||
- | |||
- | | ||
- | |||
- | -GD1 (Hunt) | ||
- | | ||
- | | ||
- | |||
- | UB Test particle simulation with a bar potential | ||
- | |||
- | ==== Input Data ==== | ||
- | |||
- | * RC tracers | ||
- | |||
- | * with or without Gaia error | ||
- | |||
- | * with or without extinction | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | ===== Challenge C: ===== | ||
- | |||
- | 1D vertical force field reconstruction | ||
- | |||
- | |||
- | ===== Future ==== | ||
- | |||
- | | ||
- | |||
- | |||
- | ===== Appendix: | ||
- | |||
- | |||
- | Mock data available? | ||
- | |||
- | | ||
- | |||
- | | ||
- | |||
- | | ||
- | |||
- | Test particles: bar potential, spiral arms | ||
- | |||
- | | ||
- | |||
- | | ||
- | |||
- | GUMS: kinematic model, multiple populations, | ||
- | |||
- | |||
- | Challenges: what we want to analysis? | ||
- | |||
- | starting: | ||
- | GD1 without error | ||
- | |||
- | selection function | ||
- | - cutting within sphere | ||
- | - cutting |z|< | ||
- | - known dust extinction | ||
- | -- smooth disk exponential | ||
- | -- Schlegel(?) map, Galaxia type dust | ||
- | -- 3D extinction | ||
- | - multiple populations | ||
- | |||
- | - Who is interested in what? | ||
- | |||
- | L. Chemin ... derive rotation curve, DM vs. disk potential. Location of bar, resonance. | ||
- | |||
- | P. McMillan ... N-body with error, the local+whole potential | ||
- | |||
- | S. Roca-Fabrega ... Moment of distribution function, vertex deviation, bar pattern speed, spiral arm (number) position and perturbation | ||
- | |||
- | J. Bovy ... vertical force. | ||
- | |||
- | J. Hunt ... M2M modelling. disc structure, DM potential? | ||
- | |||
- | S. Sharma ... analysing rotation curve | ||
- | |||
- | S. Inoue ... vertical disc structure, local DM density | ||
- | |||
- | G. Monari ... velocity distribution, | ||
- | |||
- | |
discs.1377895089.txt.gz · Last modified: 2022/10/24 11:56 (external edit)