tests:collision:gc1_archive
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
tests:collision:gc1_archive [2014/10/21 14:44] – v.henault-brunet | tests:collision:gc1_archive [2022/10/24 12:26] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== | + | ====== |
+ | |||
+ | ===== Challenge 1: Equal mass clusters in a tidal field ===== | ||
+ | |||
+ | ^ ^ ^ All Stars ^^^^ 1000 stars^^^^ | ||
+ | ^ Cluster ^ Method | ||
+ | |1 | Isotropic King (linear dens) | $0.919$ | | $1.190$ | | | ||
+ | | | Isotropic King (log dens) | | $0.046$ | $1.61$ | ||
+ | | | Anisotropic Michie King | | $0.027$ | $1.55$ | ||
+ | | | $f_\nu$ | ||
+ | |2 | Isotropic King (linear dens) | $0.875$ | | $1.322$ | | | ||
+ | | | Isotropic King (log dens)| | ||
+ | | | Anisotropic Michie King | ||
+ | | | $f_\nu$ | ||
+ | |3 | Isotropic King (linear dens) | $0.227$ | | $6.839$ | | | ||
+ | | | Isotropic King (log dens) | | $0.28$ | $7.655$ | | | ||
+ | | | Anisotropic Michie King | ||
+ | | | $f_\nu$ | ||
+ | |||
+ | ^ Cluster | ||
+ | |1 | Isotropic King vs $f_\nu$ |{{: | ||
+ | | | Anisotropic Michie King | ||
+ | |2 | Isotropic King vs $f_\nu$ | ||
+ | | | Anisotropic Michie King | {{: | ||
+ | |3 | Isotropic King vs $f_\nu$ | | ||
+ | | | Anisotropic Michie King | {{: | ||
+ | |||
+ | |||
+ | ===== Challenge 2: Isolated models with stellar evolution ===== | ||
+ | Active participants: | ||
+ | |||
+ | How important is the effect of mass segregation? | ||
+ | |||
+ | - How correct is the assumption of energy equipartition (i.e. multi-mass King models)? | ||
+ | - How different are the fits when considering: | ||
+ | - Is it better to consider luminosity weighted profiles, or number density profiles? | ||
+ | - How much can we do with 2 velocity components instead of 1 (i.e. with Gaia data)? | ||
+ | |||
+ | |||
+ | ==== Description of the models: ==== | ||
+ | |||
+ | (Based on simulations ran by Mark Gieles, not published)\\ | ||
+ | Here we consider 2 clusters: | ||
+ | |||
+ | - IC: Cored gamma/eta model, N = 1e5, Kroupa (2001) mass function between 0.1-100 Msun. | ||
+ | - No primordial binaries, no central black hole, no tidal. | ||
+ | - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) | ||
+ | - Two values for the metallicity of the stars: [Fe/H] = -2.0 and 0.0 (solar) | ||
+ | |||
+ | Below are 2 snapshots at an age of roughly 12 Gyr. The columns are: | ||
+ | |||
+ | ^ $m$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ $\log T_{EFF}$ ^ $M_{bol}$ ^ KSTAR ^ | ||
+ | | [Msun] | [PC] ||| [km s-1] ||| [K] |[MAG]| | ||
+ | |||
+ | KSTAR is the stellar type and can be between 0 and 22 and the meanings are given below in the Appendix. | ||
+ | |||
+ | - {{: | ||
+ | - {{: | ||
+ | |||
+ | Cluster properties: | ||
+ | |||
+ | ^ Cluster ^ Mass ^ Radii ^^^^ rms velocities^^^^ | ||
+ | | | |$r_{\rm h}$(3D, | ||
+ | | |[$M_\odot$] | ||
+ | |1 | ||
+ | |2 | ||
+ | |||
+ | Density distribution for cluster 2: {{: | ||
+ | |||
+ | ==== (PRELIMINARY) RESULTS: ==== | ||
+ | |||
+ | ^ ^ ^ All Stars ND ^^^ All Stars Mass^^^ All Stars Lum^^^ | ||
+ | ^ Cluster ^ Method | ||
+ | |1 | isotropic King | $3.17*10^4$ | ||
+ | | | Multi-mass King | ||
+ | | | $f_\nu$ | ||
+ | | | Parametric Jeans | | ||
+ | | | Discrete Jeans | | ||
+ | |2 | Isotropic King | $3.07*10^4$ | ||
+ | | | Multi-mass | ||
+ | | | $f_\nu$ | ||
+ | | | Parametric Jeans | | ||
+ | | | Discrete Jeans | | ||
+ | |||
+ | |||
+ | |||
+ | ===== Challenge | ||
+ | (Simulations ran and kindly made available by Holger Baumgardt)\\ | ||
+ | |||
+ | Here we consider 2 clusters which are slightly more realistic: | ||
+ | |||
+ | - IC: King (1966) W_0 = 5 model, N = 131072, Kroupa (2001) mass function between 0.1-15 Msun (no black-holes). | ||
+ | - No primordial binaries, no central black hole, circular orbit in logarithmic halo with V = 220 km/s. | ||
+ | - Z = 0.001 | ||
+ | - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) | ||
+ | - Two Galactocentric radii: 8.5 kpc and 15 kpc. | ||
+ | |||
+ | |||
+ | Below are 2 snapshots at an age of roughly 10 Myr, 100 Myr, 1Gyr and 12 Gyr. The columns are the same as in Challenge 2. | ||
+ | |||
+ | - {{: | ||
+ | - {{: | ||
+ | - {{: | ||
+ | - {{: | ||
+ | - {{: | ||
+ | - {{: | ||
+ | - {{: | ||
+ | - {{: | ||
+ | |||
+ | Questions are the same as in Challenge 2, and in addition: | ||
+ | - Is the presence of the tidal field affecting the velocity anisotropy in the outer parts? | ||
+ | - Can the mass segregation be reproduced by multi-mass King models? | ||
+ | |||
+ | | ||
+ | {{: | ||
+ | |||
+ | Different models to fit: | ||
+ | - $f_\nu$ | ||
+ | - Multi-mass King | ||
+ | - Discrete "Jeans like" modelling | ||
+ | - DF fitting (Mark W?) | ||
+ | |||
+ | ==== Results: ==== | ||
+ | Using all stars: | ||
+ | ^ ^ ^ ^ All Stars ^^^^ 1000 stars^^^^ | ||
+ | ^ Cluster ^ Snapshot ^ Method | ||
+ | |1 | 1 | Isotropic King | ||
+ | | | 1 | Multimass Michie King | | | | ||
+ | | | 1 | $f_\nu$ | ||
+ | | | 1 | Discrete modelling | ||
+ | |1 | 2 | Isotropic King | ||
+ | | | 2 | Multimass Michie King | | | | ||
+ | | | 2 | $f_\nu$ | ||
+ | | | 2 | Discrete modelling | ||
+ | |1 | 3 | Isotropic King | ||
+ | | | 3 | Multimass Michie King | | | | ||
+ | | | 3 | $f_\nu$ | ||
+ | | | 3 | Discrete modelling | ||
+ | |1 | 4 | Isotropic King | ||
+ | | | 4 | Multimass Michie King | $2.118$ | | $11.353$ | | | ||
+ | | | 4 | $f_\nu$ | ||
+ | | | 4 | Discrete modelling | ||
+ | |2 | 1 | Isotropic King | ||
+ | | | 1 | Multimass Michie King | | | | ||
+ | | | 1 | $f_\nu$ | ||
+ | | | 1 | Discrete modelling | ||
+ | |2 | 2 | Isotropic King | ||
+ | | | 2 | Multimass Michie King | | | | ||
+ | | | 2 | $f_\nu$ | ||
+ | | | 2 | Discrete modelling | ||
+ | |2 | 3 | Isotropic King | ||
+ | | | 3 | Multimass Michie King | | | | ||
+ | | | 3 | $f_\nu$ | ||
+ | | | 3 | Discrete modelling | ||
+ | |2 | 4 | Isotropic King | ||
+ | | | 4 | Multimass Michie King | | | | ||
+ | | | 4 | $f_\nu$ | ||
+ | | | 4 | Discrete modelling | ||
+ | |||
+ | Plots | ||
+ | ^ Cluster | ||
+ | |1 | 1 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 1 | Multimass Michie King | | | ||
+ | | | 1 | Discrete modelling | ||
+ | |1 | 2 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 2 | Multimass Michie King | | | ||
+ | | | 2 | Discrete modelling | ||
+ | |1 | 3 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 3 | Multimass Michie King | | | ||
+ | | | 3 | Discrete modelling | ||
+ | |1 | 4 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 4 | Multimass Michie King | ||
+ | | | 4 | Discrete modelling | ||
+ | |2 | 1 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 1 | Multimass Michie King | | | ||
+ | | | 1 | Discrete modelling | ||
+ | |2 | 2 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 2 | Multimass Michie King | | | ||
+ | | | 2 | Discrete modelling | ||
+ | |2 | 3 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 3 | Multimass Michie King | | | ||
+ | | | 3 | Discrete modelling | ||
+ | |2 | 4 | Isotropic King vs $f_\nu$ | | | ||
+ | | | 4 | Multimass Michie King | | | ||
+ | | | 4 | Discrete modelling | ||
+ | |||
+ | ==== Results: | ||
+ | Velocity dispersion for different mass species: the multi-mass King models assume that the product $m\sigma_K^2$= constant. The parameters $\sigma_K$ is not exactly the velocity dispersion. |
tests/collision/gc1_archive.1413902655.txt.gz · Last modified: 2022/10/24 12:26 (external edit)