User Tools

Site Tools


tests:collision:gc1_archive

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
tests:collision:gc1_archive [2014/10/22 15:16] v.henault-brunettests:collision:gc1_archive [2022/10/24 12:26] (current) – external edit 127.0.0.1
Line 1: Line 1:
-====== Results from GC1 workshop (Surrey) ======+====== GC I ======
  
-==== Challenge 1: Equal mass clusters in a tidal field =====+===== Challenge 1: Equal mass clusters in a tidal field =====
  
 ^ ^ ^  All Stars ^^^^ 1000 stars^^^^ ^ ^ ^  All Stars ^^^^ 1000 stars^^^^
Line 24: Line 24:
 |  | Anisotropic Michie King   | {{:data:t1c2.png?250}} |   |  | Anisotropic Michie King   | {{:data:t1c2.png?250}} |  
 |3 | Isotropic King vs $f_\nu$ |   {{:data:collisional_Ch1_3.png?250}}|  |3 | Isotropic King vs $f_\nu$ |   {{:data:collisional_Ch1_3.png?250}}| 
-|  | Anisotropic Michie King   | {{:data:t1c3.png?250}} |  +|  | Anisotropic Michie King   | {{:data:t1c3.png?250}} |     
      
 +===== Challenge 2: Isolated models with stellar evolution =====
 +Active participants: Alice Zocchi, Antonio Sollima, Matt Walker, ,  Laura Watkins, Glenn van de Ven, Pascal Steger?
 +
 +How important is the effect of mass segregation?
 +
 +  - How correct is the assumption of energy equipartition (i.e. multi-mass King models)?
 +  - How different are the fits when considering: 1.) all stars, 2.) only visible stars
 +  - Is it better to consider luminosity weighted profiles, or number density profiles?
 +  - How much can we do with 2 velocity components instead of 1 (i.e. with Gaia data)?
 +
 +
 +==== Description of the models: ====
 +
 +(Based on simulations ran by Mark Gieles, not published)\\
 +Here we consider 2 clusters:
 +
 +  - IC: Cored gamma/eta model, N = 1e5, Kroupa (2001) mass function between 0.1-100 Msun.
 +  - No primordial binaries, no central black hole, no tidal.
 +  - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002)
 +  - Two values for the metallicity of the stars: [Fe/H] = -2.0 and 0.0 (solar)
 +
 +Below are 2 snapshots at an age of roughly 12 Gyr. The columns are:
 +
 +^ $m$    ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ $\log T_{EFF}$ ^ $M_{bol}$ ^ KSTAR ^
 +| [Msun] | [PC] |||  [km s-1]  ||| [K] |[MAG]|
 +
 +KSTAR is the stellar type and can be between 0 and 22 and the meanings are given below in the Appendix.
 +
 +  - {{:ETA3_SEV_N100K_ISO_FEH-0.0_T12656.gz}}
 +  - {{:ETA3_SEV_N100K_ISO_FEH-2.0_T12892.gz}} 
 +
 +Cluster properties:
 +
 +^ Cluster ^ Mass      ^ Radii ^^^^ rms velocities^^^^
 +|    | |$r_{\rm h}$(3D,M)|$r_{\rm h}$(2D,L)|$r_{\rm h}$(2D,M)|$r_{\rm h}$(2D,N)|$v_{\rm rms}$|$v_{\rm rms}$(Giants)|
 +|    |[$M_\odot$]          [pc]           [pc]        | [pc]    | [pc] |[km/s]|[km/s]|
 +|1   |$3.34\times10^4$| 9.73            | 3.33            | 7.27    | 10.0 | 2.39 | 2.52|
 +|2   |$3.33\times10^4$| 10.9            | 4.71            | 8.20    | 11.3 | 2.30 | 2.67|
 +
 +Density distribution for cluster 2: {{:data:collisional_rho.png?250}}
 +
 +==== (PRELIMINARY) RESULTS: ====
 +
 +^ ^ ^  All Stars ND ^^^ All Stars Mass^^^ All Stars Lum^^^
 +^ Cluster ^ Method             ^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$R_{\rm h}$
 +|1 | isotropic King            | $3.17*10^4$  | $11.76$ | $8.67$ | $3.03*10^4$ | $9.06$ | $6.66$ | $3.07*10^4$ | $8.63$ | $6.39$ | 
 +|  | Multi-mass King                          |           |  
 +|  | $f_\nu$                   | $3.80*10^4$  | $12.88$ | $9.66$ | $3.54*10^4$ | $9.00$ | $6.73$ | $3.08*10^4$ | $3.31$ | $2.48$ |
 +|  | Parametric Jeans          |                |           
 +|  | Discrete Jeans            |                |           
 +|2 | Isotropic King            | $3.07*10^4$  | $14.27$ | $10.55$ | $2.72*10^4$ | $11.69$ | $8.32$ | $2.93*10^4$ | $11.13$ | $8.19$ |
 +|  | Multi-mass  King          |                |           |  
 +|  | $f_\nu$                   | $3.71*10^4$ | $14.66$ | $11.03$ | $3.66*10^4$ | $11.07$ | $8.26$ | $3.30*10^4$ | $6.08$ | $4.50$ |
 +|  | Parametric Jeans          |                |           
 +|  | Discrete Jeans            |                |           
 +
 +
 +
 +===== Challenge 3: Clusters in tidal fields with stellar evolution =====
 +(Simulations ran and kindly made available by Holger Baumgardt)\\
 +
 +Here we consider 2 clusters which are slightly more realistic:
 +
 +  - IC: King (1966) W_0 = 5 model, N = 131072, Kroupa (2001) mass function between 0.1-15 Msun (no black-holes).
 +  - No primordial binaries, no central black hole, circular orbit in logarithmic halo with V = 220 km/s.
 +  - Z = 0.001
 +  - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002)
 +  - Two Galactocentric radii: 8.5 kpc and 15 kpc.
 +
 +
 +Below are 2 snapshots at an age of roughly 10 Myr, 100 Myr, 1Gyr and 12 Gyr. The columns are the same as in Challenge 2.
 +
 +  - {{:data:W05_N131K_RG8.5_FEH-0.0_T10.gz}} UPDATED! Thursday August 22
 +  - {{:data:W05_N131K_RG8.5_FEH-0.0_T100.gz}} UPDATED! Thursday August 22
 +  - {{:data:W05_N131K_RG8.5_FEH-0.0_T1000.gz}} UPDATED! Thursday August 22
 +  - {{:W05_N131K_RG8.5_FEH-0.0_T12000.gz}}
 +  - {{:data:W05-N131K_RG15_FEH-0.0.T10.gz}} NEW! Tuesday August 20
 +  - {{:data:W05-N131K_RG15_FEH-0.0.T100.gz}} NEW! Tuesday August 20
 +  - {{:data:W05-N131K_RG15_FEH-0.0.T1000.gz}} NEW! Tuesday August 20
 +  - {{:W05_N131K_RG15_FEH-0.0_T12000.gz}}
 +
 +Questions are the same as in Challenge 2, and in addition:
 +  - Is the presence of the tidal field affecting the velocity anisotropy in the outer parts?
 +  - Can the mass segregation be reproduced by multi-mass King models? 
 +
 + Example of the velocity dispersion difference of different mass components:
 +{{:data:sig2ratio.png?250}}
 +
 +Different models to fit:
 +  - $f_\nu$
 +  - Multi-mass King
 +  - Discrete "Jeans like" modelling
 +  - DF fitting (Mark W?)
 +
 +==== Results: ====
 +Using all stars:
 +^ ^ ^ ^  All Stars ^^^^ 1000 stars^^^^
 +^ Cluster ^ Snapshot ^ Method             ^$M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$ ^ $M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$^
 +|1 | 1 | Isotropic King    |         | |           
 +|  | 1 | Multimass Michie King      |         | |             |  
 +|  | 1 | $f_\nu$              |  |           | |           
 +|  | 1 | Discrete modelling        |                                 
 +|1 | 2 | Isotropic King    |         | |           
 +|  | 2 | Multimass Michie King      |         | |             |  
 +|  | 2 | $f_\nu$              |  |           | |           
 +|  | 2 | Discrete modelling        |                                 
 +|1 | 3 | Isotropic King    |         | |           
 +|  | 3 | Multimass Michie King      |         | |             |  
 +|  | 3 | $f_\nu$              |  |           | |           
 +|  | 3 | Discrete modelling        |                                 
 +|1 | 4 | Isotropic King    |         | |           
 +|  | 4 | Multimass Michie King | $2.118$ |  | $11.353$ |  |  
 +|  | 4 | $f_\nu$              |  |           | |           
 +|  | 4 | Discrete modelling        |                                 
 +|2 | 1 | Isotropic King    |         | |           
 +|  | 1 | Multimass Michie King      |         | |             |  
 +|  | 1 | $f_\nu$              |  |           | |           
 +|  | 1 | Discrete modelling        |                                 
 +|2 | 2 | Isotropic King    |         | |           
 +|  | 2 | Multimass Michie King      |         | |             |  
 +|  | 2 | $f_\nu$              |  |           | |           
 +|  | 2 | Discrete modelling        |                                 
 +|2 | 3 | Isotropic King    |         | |           
 +|  | 3 | Multimass Michie King      |         | |             |  
 +|  | 3 | $f_\nu$              |  |           | |           
 +|  | 3 | Discrete modelling        |                                 
 +|2 | 4 | Isotropic King    |         | |           
 +|  | 4 | Multimass Michie King      |         | |             |  
 +|  | 4 | $f_\nu$              |  |           | |           
 +|  | 4 | Discrete modelling        |                                 
 +
 +Plots
 +^ Cluster  ^ Plots ^
 +|1 | 1 | Isotropic King vs $f_\nu$ | |
 +|  | 1 | Multimass Michie King   | |  
 +|  | 1 | Discrete modelling        | | 
 +|1 | 2 | Isotropic King vs $f_\nu$ | |
 +|  | 2 | Multimass Michie King   | |  
 +|  | 2 | Discrete modelling        | | 
 +|1 | 3 | Isotropic King vs $f_\nu$ | |
 +|  | 3 | Multimass Michie King   | |  
 +|  | 3 | Discrete modelling        | | 
 +|1 | 4 | Isotropic King vs $f_\nu$ | |
 +|  | 4 | Multimass Michie King   |{{:data:t3c1.png?250}} |  
 +|  | 4 | Discrete modelling        | | 
 +|2 | 1 | Isotropic King vs $f_\nu$ | |
 +|  | 1 | Multimass Michie King   | |  
 +|  | 1 | Discrete modelling        | | 
 +|2 | 2 | Isotropic King vs $f_\nu$ | |
 +|  | 2 | Multimass Michie King   | |  
 +|  | 2 | Discrete modelling        | | 
 +|2 | 3 | Isotropic King vs $f_\nu$ | |
 +|  | 3 | Multimass Michie King   | |  
 +|  | 3 | Discrete modelling        | | 
 +|2 | 4 | Isotropic King vs $f_\nu$ | |
 +|  | 4 | Multimass Michie King   | |  
 +|  | 4 | Discrete modelling        | | 
 +
 +==== Results: ====
 +Velocity dispersion for different mass species: the multi-mass King models assume that the product $m\sigma_K^2$= constant. The parameters $\sigma_K$ is not exactly the velocity dispersion. 
 +
tests/collision/gc1_archive.1413990973.txt.gz · Last modified: 2022/10/24 12:26 (external edit)