tests:collision:gc1_archive
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| tests:collision:gc1_archive [2014/10/22 15:16] – v.henault-brunet | tests:collision:gc1_archive [2022/10/24 12:26] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ====== | + | ====== |
| - | ==== Challenge 1: Equal mass clusters in a tidal field ===== | + | ===== Challenge 1: Equal mass clusters in a tidal field ===== |
| ^ ^ ^ All Stars ^^^^ 1000 stars^^^^ | ^ ^ ^ All Stars ^^^^ 1000 stars^^^^ | ||
| Line 24: | Line 24: | ||
| | | Anisotropic Michie King | {{: | | | Anisotropic Michie King | {{: | ||
| |3 | Isotropic King vs $f_\nu$ | | |3 | Isotropic King vs $f_\nu$ | | ||
| - | | | Anisotropic Michie King | {{: | + | | | Anisotropic Michie King | {{: |
| | | ||
| + | ===== Challenge 2: Isolated models with stellar evolution ===== | ||
| + | Active participants: | ||
| + | |||
| + | How important is the effect of mass segregation? | ||
| + | |||
| + | - How correct is the assumption of energy equipartition (i.e. multi-mass King models)? | ||
| + | - How different are the fits when considering: | ||
| + | - Is it better to consider luminosity weighted profiles, or number density profiles? | ||
| + | - How much can we do with 2 velocity components instead of 1 (i.e. with Gaia data)? | ||
| + | |||
| + | |||
| + | ==== Description of the models: ==== | ||
| + | |||
| + | (Based on simulations ran by Mark Gieles, not published)\\ | ||
| + | Here we consider 2 clusters: | ||
| + | |||
| + | - IC: Cored gamma/eta model, N = 1e5, Kroupa (2001) mass function between 0.1-100 Msun. | ||
| + | - No primordial binaries, no central black hole, no tidal. | ||
| + | - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) | ||
| + | - Two values for the metallicity of the stars: [Fe/H] = -2.0 and 0.0 (solar) | ||
| + | |||
| + | Below are 2 snapshots at an age of roughly 12 Gyr. The columns are: | ||
| + | |||
| + | ^ $m$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ $\log T_{EFF}$ ^ $M_{bol}$ ^ KSTAR ^ | ||
| + | | [Msun] | [PC] ||| [km s-1] ||| [K] |[MAG]| | ||
| + | |||
| + | KSTAR is the stellar type and can be between 0 and 22 and the meanings are given below in the Appendix. | ||
| + | |||
| + | - {{: | ||
| + | - {{: | ||
| + | |||
| + | Cluster properties: | ||
| + | |||
| + | ^ Cluster ^ Mass ^ Radii ^^^^ rms velocities^^^^ | ||
| + | | | |$r_{\rm h}$(3D, | ||
| + | | |[$M_\odot$] | ||
| + | |1 | ||
| + | |2 | ||
| + | |||
| + | Density distribution for cluster 2: {{: | ||
| + | |||
| + | ==== (PRELIMINARY) RESULTS: ==== | ||
| + | |||
| + | ^ ^ ^ All Stars ND ^^^ All Stars Mass^^^ All Stars Lum^^^ | ||
| + | ^ Cluster ^ Method | ||
| + | |1 | isotropic King | $3.17*10^4$ | ||
| + | | | Multi-mass King | ||
| + | | | $f_\nu$ | ||
| + | | | Parametric Jeans | | ||
| + | | | Discrete Jeans | | ||
| + | |2 | Isotropic King | $3.07*10^4$ | ||
| + | | | Multi-mass | ||
| + | | | $f_\nu$ | ||
| + | | | Parametric Jeans | | ||
| + | | | Discrete Jeans | | ||
| + | |||
| + | |||
| + | |||
| + | ===== Challenge 3: Clusters in tidal fields with stellar evolution ===== | ||
| + | (Simulations ran and kindly made available by Holger Baumgardt)\\ | ||
| + | |||
| + | Here we consider 2 clusters which are slightly more realistic: | ||
| + | |||
| + | - IC: King (1966) W_0 = 5 model, N = 131072, Kroupa (2001) mass function between 0.1-15 Msun (no black-holes). | ||
| + | - No primordial binaries, no central black hole, circular orbit in logarithmic halo with V = 220 km/s. | ||
| + | - Z = 0.001 | ||
| + | - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) | ||
| + | - Two Galactocentric radii: 8.5 kpc and 15 kpc. | ||
| + | |||
| + | |||
| + | Below are 2 snapshots at an age of roughly 10 Myr, 100 Myr, 1Gyr and 12 Gyr. The columns are the same as in Challenge 2. | ||
| + | |||
| + | - {{: | ||
| + | - {{: | ||
| + | - {{: | ||
| + | - {{: | ||
| + | - {{: | ||
| + | - {{: | ||
| + | - {{: | ||
| + | - {{: | ||
| + | |||
| + | Questions are the same as in Challenge 2, and in addition: | ||
| + | - Is the presence of the tidal field affecting the velocity anisotropy in the outer parts? | ||
| + | - Can the mass segregation be reproduced by multi-mass King models? | ||
| + | |||
| + | | ||
| + | {{: | ||
| + | |||
| + | Different models to fit: | ||
| + | - $f_\nu$ | ||
| + | - Multi-mass King | ||
| + | - Discrete "Jeans like" modelling | ||
| + | - DF fitting (Mark W?) | ||
| + | |||
| + | ==== Results: ==== | ||
| + | Using all stars: | ||
| + | ^ ^ ^ ^ All Stars ^^^^ 1000 stars^^^^ | ||
| + | ^ Cluster ^ Snapshot ^ Method | ||
| + | |1 | 1 | Isotropic King | ||
| + | | | 1 | Multimass Michie King | | | | ||
| + | | | 1 | $f_\nu$ | ||
| + | | | 1 | Discrete modelling | ||
| + | |1 | 2 | Isotropic King | ||
| + | | | 2 | Multimass Michie King | | | | ||
| + | | | 2 | $f_\nu$ | ||
| + | | | 2 | Discrete modelling | ||
| + | |1 | 3 | Isotropic King | ||
| + | | | 3 | Multimass Michie King | | | | ||
| + | | | 3 | $f_\nu$ | ||
| + | | | 3 | Discrete modelling | ||
| + | |1 | 4 | Isotropic King | ||
| + | | | 4 | Multimass Michie King | $2.118$ | | $11.353$ | | | ||
| + | | | 4 | $f_\nu$ | ||
| + | | | 4 | Discrete modelling | ||
| + | |2 | 1 | Isotropic King | ||
| + | | | 1 | Multimass Michie King | | | | ||
| + | | | 1 | $f_\nu$ | ||
| + | | | 1 | Discrete modelling | ||
| + | |2 | 2 | Isotropic King | ||
| + | | | 2 | Multimass Michie King | | | | ||
| + | | | 2 | $f_\nu$ | ||
| + | | | 2 | Discrete modelling | ||
| + | |2 | 3 | Isotropic King | ||
| + | | | 3 | Multimass Michie King | | | | ||
| + | | | 3 | $f_\nu$ | ||
| + | | | 3 | Discrete modelling | ||
| + | |2 | 4 | Isotropic King | ||
| + | | | 4 | Multimass Michie King | | | | ||
| + | | | 4 | $f_\nu$ | ||
| + | | | 4 | Discrete modelling | ||
| + | |||
| + | Plots | ||
| + | ^ Cluster | ||
| + | |1 | 1 | Isotropic King vs $f_\nu$ | | | ||
| + | | | 1 | Multimass Michie King | | | ||
| + | | | 1 | Discrete modelling | ||
| + | |1 | 2 | Isotropic King vs $f_\nu$ | | | ||
| + | | | 2 | Multimass Michie King | | | ||
| + | | | 2 | Discrete modelling | ||
| + | |1 | 3 | Isotropic King vs $f_\nu$ | | | ||
| + | | | 3 | Multimass Michie King | | | ||
| + | | | 3 | Discrete modelling | ||
| + | |1 | 4 | Isotropic King vs $f_\nu$ | | | ||
| + | | | 4 | Multimass Michie King | ||
| + | | | 4 | Discrete modelling | ||
| + | |2 | 1 | Isotropic King vs $f_\nu$ | | | ||
| + | | | 1 | Multimass Michie King | | | ||
| + | | | 1 | Discrete modelling | ||
| + | |2 | 2 | Isotropic King vs $f_\nu$ | | | ||
| + | | | 2 | Multimass Michie King | | | ||
| + | | | 2 | Discrete modelling | ||
| + | |2 | 3 | Isotropic King vs $f_\nu$ | | | ||
| + | | | 3 | Multimass Michie King | | | ||
| + | | | 3 | Discrete modelling | ||
| + | |2 | 4 | Isotropic King vs $f_\nu$ | | | ||
| + | | | 4 | Multimass Michie King | | | ||
| + | | | 4 | Discrete modelling | ||
| + | |||
| + | ==== Results: ==== | ||
| + | Velocity dispersion for different mass species: the multi-mass King models assume that the product $m\sigma_K^2$= constant. The parameters $\sigma_K$ is not exactly the velocity dispersion. | ||
| + | |||
tests/collision/gc1_archive.1413990973.txt.gz · Last modified: 2022/10/24 12:26 (external edit)