====== GC I ====== ===== Challenge 1: Equal mass clusters in a tidal field ===== ^ ^ ^ All Stars ^^^^ 1000 stars^^^^ ^ Cluster ^ Method ^$M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$ ^ $M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$^ |1 | Isotropic King (linear dens) | $0.919$ | | $1.190$ | | | | Isotropic King (log dens) | | $0.046$ | $1.61$ | | | | Anisotropic Michie King | | $0.027$ | $1.55$ | | | | $f_\nu$ | $1.082$ | | $1.134$ | | |2 | Isotropic King (linear dens) | $0.875$ | | $1.322$ | | | | Isotropic King (log dens)| | $0.04$ | $1.752$ | | | | Anisotropic Michie King | | $0.026$ | $1.618$ | | | | $f_\nu$ | $1.023$ | | $1.314$ | | |3 | Isotropic King (linear dens) | $0.227$ | | $6.839$ | | | | Isotropic King (log dens) | | $0.28$ | $7.655$ | | | | Anisotropic Michie King | | | | | | | $f_\nu$ | $0.259$ | | $8.225$ | | ^ Cluster ^ Plots ^ |1 | Isotropic King vs $f_\nu$ |{{:data:ch1_1_new.png?250}} | | | Anisotropic Michie King |{{:t1c1.png?250}} | |2 | Isotropic King vs $f_\nu$ | {{:data:collisional_Ch1_2.png?250}} | | | Anisotropic Michie King | {{:data:t1c2.png?250}} | |3 | Isotropic King vs $f_\nu$ | {{:data:collisional_Ch1_3.png?250}}| | | Anisotropic Michie King | {{:data:t1c3.png?250}} | ===== Challenge 2: Isolated models with stellar evolution ===== Active participants: Alice Zocchi, Antonio Sollima, Matt Walker, , Laura Watkins, Glenn van de Ven, Pascal Steger? How important is the effect of mass segregation? - How correct is the assumption of energy equipartition (i.e. multi-mass King models)? - How different are the fits when considering: 1.) all stars, 2.) only visible stars - Is it better to consider luminosity weighted profiles, or number density profiles? - How much can we do with 2 velocity components instead of 1 (i.e. with Gaia data)? ==== Description of the models: ==== (Based on simulations ran by Mark Gieles, not published)\\ Here we consider 2 clusters: - IC: Cored gamma/eta model, N = 1e5, Kroupa (2001) mass function between 0.1-100 Msun. - No primordial binaries, no central black hole, no tidal. - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) - Two values for the metallicity of the stars: [Fe/H] = -2.0 and 0.0 (solar) Below are 2 snapshots at an age of roughly 12 Gyr. The columns are: ^ $m$ ^ $X$ ^ $Y$ ^ $Z$ ^ $V_x$ ^ $V_y$ ^ $V_z$ ^ $\log T_{EFF}$ ^ $M_{bol}$ ^ KSTAR ^ | [Msun] | [PC] ||| [km s-1] ||| [K] |[MAG]| KSTAR is the stellar type and can be between 0 and 22 and the meanings are given below in the Appendix. - {{:ETA3_SEV_N100K_ISO_FEH-0.0_T12656.gz}} - {{:ETA3_SEV_N100K_ISO_FEH-2.0_T12892.gz}} Cluster properties: ^ Cluster ^ Mass ^ Radii ^^^^ rms velocities^^^^ | | |$r_{\rm h}$(3D,M)|$r_{\rm h}$(2D,L)|$r_{\rm h}$(2D,M)|$r_{\rm h}$(2D,N)|$v_{\rm rms}$|$v_{\rm rms}$(Giants)| | |[$M_\odot$] | [pc] | [pc] | [pc] | [pc] |[km/s]|[km/s]| |1 |$3.34\times10^4$| 9.73 | 3.33 | 7.27 | 10.0 | 2.39 | 2.52| |2 |$3.33\times10^4$| 10.9 | 4.71 | 8.20 | 11.3 | 2.30 | 2.67| Density distribution for cluster 2: {{:data:collisional_rho.png?250}} ==== (PRELIMINARY) RESULTS: ==== ^ ^ ^ All Stars ND ^^^ All Stars Mass^^^ All Stars Lum^^^ ^ Cluster ^ Method ^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$M$^$r_{\rm h}$^$R_{\rm h}$^$R_{\rm h}$ |1 | isotropic King | $3.17*10^4$ | $11.76$ | $8.67$ | $3.03*10^4$ | $9.06$ | $6.66$ | $3.07*10^4$ | $8.63$ | $6.39$ | | | Multi-mass King | | | | | | | $f_\nu$ | $3.80*10^4$ | $12.88$ | $9.66$ | $3.54*10^4$ | $9.00$ | $6.73$ | $3.08*10^4$ | $3.31$ | $2.48$ | | | Parametric Jeans | | | | | | | Discrete Jeans | | | | | |2 | Isotropic King | $3.07*10^4$ | $14.27$ | $10.55$ | $2.72*10^4$ | $11.69$ | $8.32$ | $2.93*10^4$ | $11.13$ | $8.19$ | | | Multi-mass King | | | | | | | $f_\nu$ | $3.71*10^4$ | $14.66$ | $11.03$ | $3.66*10^4$ | $11.07$ | $8.26$ | $3.30*10^4$ | $6.08$ | $4.50$ | | | Parametric Jeans | | | | | | | Discrete Jeans | | | | | ===== Challenge 3: Clusters in tidal fields with stellar evolution ===== (Simulations ran and kindly made available by Holger Baumgardt)\\ Here we consider 2 clusters which are slightly more realistic: - IC: King (1966) W_0 = 5 model, N = 131072, Kroupa (2001) mass function between 0.1-15 Msun (no black-holes). - No primordial binaries, no central black hole, circular orbit in logarithmic halo with V = 220 km/s. - Z = 0.001 - Stellar evolution and mass-loss according to Hurley et al. (2000, 2002) - Two Galactocentric radii: 8.5 kpc and 15 kpc. Below are 2 snapshots at an age of roughly 10 Myr, 100 Myr, 1Gyr and 12 Gyr. The columns are the same as in Challenge 2. - {{:data:W05_N131K_RG8.5_FEH-0.0_T10.gz}} UPDATED! Thursday August 22 - {{:data:W05_N131K_RG8.5_FEH-0.0_T100.gz}} UPDATED! Thursday August 22 - {{:data:W05_N131K_RG8.5_FEH-0.0_T1000.gz}} UPDATED! Thursday August 22 - {{:W05_N131K_RG8.5_FEH-0.0_T12000.gz}} - {{:data:W05-N131K_RG15_FEH-0.0.T10.gz}} NEW! Tuesday August 20 - {{:data:W05-N131K_RG15_FEH-0.0.T100.gz}} NEW! Tuesday August 20 - {{:data:W05-N131K_RG15_FEH-0.0.T1000.gz}} NEW! Tuesday August 20 - {{:W05_N131K_RG15_FEH-0.0_T12000.gz}} Questions are the same as in Challenge 2, and in addition: - Is the presence of the tidal field affecting the velocity anisotropy in the outer parts? - Can the mass segregation be reproduced by multi-mass King models? Example of the velocity dispersion difference of different mass components: {{:data:sig2ratio.png?250}} Different models to fit: - $f_\nu$ - Multi-mass King - Discrete "Jeans like" modelling - DF fitting (Mark W?) ==== Results: ==== Using all stars: ^ ^ ^ ^ All Stars ^^^^ 1000 stars^^^^ ^ Cluster ^ Snapshot ^ Method ^$M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$ ^ $M$^$r_{\rm c}$^$r_{\rm h}$^$r_{\rm J}$^ |1 | 1 | Isotropic King | | | | | | | 1 | Multimass Michie King | | | | | | | 1 | $f_\nu$ | | | | | | | 1 | Discrete modelling | | | | | |1 | 2 | Isotropic King | | | | | | | 2 | Multimass Michie King | | | | | | | 2 | $f_\nu$ | | | | | | | 2 | Discrete modelling | | | | | |1 | 3 | Isotropic King | | | | | | | 3 | Multimass Michie King | | | | | | | 3 | $f_\nu$ | | | | | | | 3 | Discrete modelling | | | | | |1 | 4 | Isotropic King | | | | | | | 4 | Multimass Michie King | $2.118$ | | $11.353$ | | | | 4 | $f_\nu$ | | | | | | | 4 | Discrete modelling | | | | | |2 | 1 | Isotropic King | | | | | | | 1 | Multimass Michie King | | | | | | | 1 | $f_\nu$ | | | | | | | 1 | Discrete modelling | | | | | |2 | 2 | Isotropic King | | | | | | | 2 | Multimass Michie King | | | | | | | 2 | $f_\nu$ | | | | | | | 2 | Discrete modelling | | | | | |2 | 3 | Isotropic King | | | | | | | 3 | Multimass Michie King | | | | | | | 3 | $f_\nu$ | | | | | | | 3 | Discrete modelling | | | | | |2 | 4 | Isotropic King | | | | | | | 4 | Multimass Michie King | | | | | | | 4 | $f_\nu$ | | | | | | | 4 | Discrete modelling | | | | | Plots ^ Cluster ^ Plots ^ |1 | 1 | Isotropic King vs $f_\nu$ | | | | 1 | Multimass Michie King | | | | 1 | Discrete modelling | | |1 | 2 | Isotropic King vs $f_\nu$ | | | | 2 | Multimass Michie King | | | | 2 | Discrete modelling | | |1 | 3 | Isotropic King vs $f_\nu$ | | | | 3 | Multimass Michie King | | | | 3 | Discrete modelling | | |1 | 4 | Isotropic King vs $f_\nu$ | | | | 4 | Multimass Michie King |{{:data:t3c1.png?250}} | | | 4 | Discrete modelling | | |2 | 1 | Isotropic King vs $f_\nu$ | | | | 1 | Multimass Michie King | | | | 1 | Discrete modelling | | |2 | 2 | Isotropic King vs $f_\nu$ | | | | 2 | Multimass Michie King | | | | 2 | Discrete modelling | | |2 | 3 | Isotropic King vs $f_\nu$ | | | | 3 | Multimass Michie King | | | | 3 | Discrete modelling | | |2 | 4 | Isotropic King vs $f_\nu$ | | | | 4 | Multimass Michie King | | | | 4 | Discrete modelling | | ==== Results: ==== Velocity dispersion for different mass species: the multi-mass King models assume that the product $m\sigma_K^2$= constant. The parameters $\sigma_K$ is not exactly the velocity dispersion.