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ABSTRACT

We provide discrete (6-D) samplings of 32 unique phase-space distribution func-
tions (DFs) calculated for various potentials (assumed to be dominated by a spherical
dark matter halo), tracer density profiles, and tracer velocity anisotropies assumed to
be of Osipkov-Merrit form:β(r) ≡ 1− ¯v2

θ/ ¯v2
r = r2/(r2 + r2

a). Additionally we provide
3600 mock data sets that optionally include any and/or all (at the user’s discretion) of
the following phenomena: observational errors, foreground contamination, spectral-
index (i.e., a proxy for metallicity), binary orbital motions, perspective-induced ve-
locity gradients due to systemic motion transverse to the line of sight, and chemo-
dynamically independent stellar sub-populations. These mock data span a range of
realistic sample sizes and include various levels of intrinsic overlap among up to two
stellar sub-populations. Data can be downloaded from the GaiaChallenge wiki.

Subject headings: Gaia Challenge, Spherical Models

1. Discrete Samplings of Tracer Distribution Functions

We follow Walker & Peñarrubia (2011) in considering dynamical tracer populations (i.e., stel-
lar populations) that are distributed according to a generalized Hernquist density profile (Hernquist
1990; Zhao 1996),

ν∗(r) = ν0

(

r
r∗

)−γ∗[

1+
( r

r∗

)α∗

](γ∗−β∗)/α∗

, (1)

and dark matter halos with density profiles that take the sameform,

ρDM(r) = ρ0

(

r
rDM

)−γDM
[
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rDM

)αDM

](γDM−βDM )/αDM

. (2)
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These profiles have independent parameters specifying normalization, scale radius, inner logarith-
mic slope (γ, subscripts omitted for brevity), outer logarithmic slope(β), and the sharpness (α) of
the transition between the two slopes.

We consider dynamical models in which the central slope of the dark matter density profile
takes values of eitherγDM = 0 or γDM = 1. We hold fixed other halo parameters at scale radius
rDM = 1 kpc, outer slopeβDM = 3 andαDM = 1. For the tracer populations we consider ‘generalized’
Plummer profiles that have structural parametersα∗ = 2, outer slopeβ∗ = 5, inner slopesγ∗ =
0.1,1.0 and a range of scale radiir∗/rDM = 0.1,0.25,0.5,1 corresponding to various degrees of
‘embeddedness’ within the dark matter halo.

We consider the family of spherical, anisotropic distribution functions discussed by Osipkov
(1979) and Merritt (1985). These models have velocity distributions with anisotropy profiles of
the formβani(r) ≡ 1− ¯v2

θ/
¯v2
r = r2/(r2 + r2

a). We consider values for the anisotropy radiusra that
give the stellar subcomponent a velocity distribution thateither is isotropic at all radii (ra = ∞)
or gradually changes from isotropic at small radii to radially anisotropic at large radii (ra = r∗).
Having specified the profilesν(r), ρ(r) andβani(r) for each stellar subcomponent in each dark
matter halo, we use Equation 11 of Merritt (1985) to calculate the corresponding phase-space
distribution functions. We check this calculation by performing N-body simulations in which stars
orbit within the adopted potential and have initial positions/velocities drawn from the calculated
distribution function. These simulations show no significant departures from the initial dynamical
configuration after 100 crossing times, indicating that thecalculated distribution functions indeed
correspond to equilibrium dynamical models.

Table 1 lists the grid of input parameters that specifies 32 unique dynamical models that we
use to represent individual dSph stellar subcomponents.

Files containing discrete samplings corresponding to a single tracer population are available
at the GaiaChallenge wiki (seespherical_df.tar.gz) and have names

gsAAA_bsBBB_rcrsCCC_rarcDDD_EEEE_FFFFmpc3_df.dat,

where capital letters encode intrinsic properties of the model:

AAA= 100γ∗
BBB= 10β∗

CCC= 100r∗/rDM

DDD= 100ra/r∗
EEEE=“core" forγDM = 0, “cusp" forγDM = 1
FFFF= 1000ρ0.

Notice the multiplicative coefficients, which are present in order to eliminate periods from the
filenames.
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In these files, each row of six columns contains an independent random sampling of the 6-D
phase-space distribution. Columns give the following information:

1. x position with respect to center (units of pc)
2. y position with respect to center (pc)
3. z position with respect to center (pc)
4. vx velocity with respect to system mean (km/s)
5. vy velocity with respect to system mean (km/s)
6. vz velocity with respect to system mean (km/s)

2. Mock Data Sets

Using the discrete samplings described above, we generate mock data sets that include re-
alistic phenomena such as observational errors, foreground contamination, spectral-index (i.e.,
a proxy for metallicity), binary orbital motions, perspective-induced velocity gradients due to
systemic motion transverse to the line of sight, and chemo-dynamically independent stellar sub-
populations. For completeness we allow all mock data sets tohave contributions from two stellar
sub-components as well as a foreground component. In order to grant the user maximum flexibility,
we identify the population from which each star is drawn.

Given the grid of models specified by Table 1, there are 320 unique ways to combine two
tracer populations that share the same potential. We perform ten realizations of each combination,
giving a total of 3200 mock data sets. In setting up a given realization we draw stellar population
parameters randomly from uniform distributions within thefollowing limits:

• sample sizes 3≤ log10[N1 + N2 + NMW] ≤ 4 (similar to the available samples)

• member fractions 0.4≤ (N1 + N2)/(N1 + N2 + NMW) ≤ 0.9

• subcomponent fractions 0.1≤ N1/(N1 + N2) ≤ 0.9

• mean systemic velocities (heliocentric rest frame) 0≤ 〈V 〉/(kms−1) ≤ 250

• mean spectral index 0.3≤ 〈W ′〉1/Å≤ 0.5 for the ‘metal-rich’ subcomponent

• mean spectral index separation 0≤ (〈W ′〉1 − 〈W ′〉2)/Å≤ 0.25

• proper motions−100≤ µα/(mas/cent)≤ +100 and−100≤ µδ/(mas/cent)≤ +100.

• binary fractions 0≤ fb ≤ 1, wherefb is the fraction of sampled stars to which we add binary
motion



– 4 –

We place half (randomly selected) of the synthetic ‘dSphs’ at the (3D) position of the Fornax dwarf
spheroidal (dSph;α = 02 : 39 : 59,δ = −34 : 27 : 00,D = 138 kpc) and the other half at the location
of Sculptor dSph (α = 01 : 00 : 09,δ = −33 : 42 : 30,D = 79 kpc; Mateo 1998).

With the above stellar population parameters specified for agiven realization, we then use an
accept/reject algorithm to draw the appropriate numbers ofpositions and velocities from discrete
random samplings of the appropriate 6D distribution function. We then project the positions and
velocities along the line of sight in order to mimic observables. Next we assign reduced Mg
indices,W ′ (Walker, Mateo & Olszewski 2009), to each star according to whether it is drawn
from a relatively ‘metal-rich’ or ‘metal-poor’ sub-population. We assignW ′ values to the metal-
rich and metal-poor member stars by drawing values from Gaussian distributions with variances
σ2

W ′,1 = σ2
W ′,2 = 0.02 Å2 and means drawn randomly from the ranges specified above. To the line-

of-sight velocities of all member stars we apply redshifts〈V 〉α∗,δ∗ appropriate to the systemic 3D
space motion and line of sight (Walker et al. 2008) and add velocities corresponding to binary
orbital motions (see below). Finally, we scatter all velocities andW ′ values according to actual
measurement errors drawn randomly from the dSph data of (Walker, Mateo & Olszewski 2009,
median errors areǫV ∼ 2 km s−1 andǫW ′ ∼ 0.01Å).

To stars drawn from a ‘foreground’ contamination componentwe assign positions drawn ran-
domly from a uniform spatial distribution (within the projected position of the outermost member
star) and assign velocities drawn randomly from the Besançon model of Milky Way stars (filtered
by photometric criteria for selecting dSph red giants) along the line of sight to the either (chosen
randomly in each realization) the Fornax or the Sculptor dSph. To foreground stars we assign
W ′ values and associated errors drawn directly from measurements of probable (Pmem< 0.1) fore-
ground stars in the data of Walker, Mateo & Olszewski (2009).

2.1. Binary Orbital Motions

As mentioned above, to the line-of-sight velocity of a fraction fb of sampled points we add
binary motion given by

vb =
2πa1sini

P
√

1− e2

[

cos(θ +ω) + ecosω
]

, (3)

wherea1, P ande are the semimajor axis, period and eccentricity, respectively, of the primary’s
orbit, i is the inclination of the orbital plane with respect to the line of sight,θ is the phase with
respect to periastron, andω is the longitude of periastron.

Following McConnachie & Côté (2010), we assume the primary has massm1 = 0.8M⊙ and
adopt log-normal distributions for the mass ratioq ≡ m2/m1 and for the period distribution, as fit
by Duquennoy & Mayor (1991) to binaries in the field. That is,

dN
dq

∝ exp

[

−
1
2

(q − q)2

σ2
q

]

, (4)
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and
dN

d log10P
∝ exp

[

−
1
2

(

log10P − log10P
)2

σ2
log10P

]

(5)

with q = 0.23,σq = 0.42,log10[P] = 4.8 andσlog10P = 2.3, whereP is measured in days (Duquennoy
& Mayor 1991). Following McConnachie & Côté (2010), we setqmin = 0.1 so that the secondary
always has mass larger than the threshold for hydrogen burning.

Again following McConnachie & Côté (2010), we consider two possible distributions for ec-
centricity. First, we consider circular orbits (e = 0 throughout), and second we consider a ‘thermal’
distribution (Heggie 1975):

dN
de

∝ 2e. (6)

We draw inclinations with probability proportional tosin(i). We draw the orientation,ω, with
uniform probability between 0 andπ. We draw the phase with probability that is proportional
to the inverse of the angular velocity,θ̇−1(m,P,e). We add no binary motion to the two velocity
components (vx,vy) transverse to the line of sight, as the long time baseline required to measure
proper motions will effectively average over the binary phase in a way that instantaenous redshifts
do not.

2.2. Mock Data Files

Files containing mock data sets are available at the GaiaChallenge wiki (seecore_mock.tar.gz
andcusp_mock.tar.gz) and have names[model_name]_6d.mem2, where

[model_name]=c1_AAA_BBB_CCC_DDD_EEE_c2_FFF_GGG_HHH_III_JJJ_NNN,

and
AAA= 100γ∗, for member component 1
BBB= 10β∗ for member component 1
CCC=r∗/10, for member component 1, units of pc
DDD= 100ra, for member component 1 (a value of “inf" implies isotropy)
EEE=“core" forγDM = 0, “cusp" forγDM = 1
FFF= 100γ∗, for member component 2
GGG= 10β∗, for member component 2
HHH= r∗/10, for member component 2, units of pc
III= 100ra, for member component 2 (a value of “inf" implies isotropy)
JJJ= “core" forγDM = 0, “cusp" forγDM = 1.

Each line in these files gives information about a given star sampled from the appropriate
distribution function. The (x,y,z) coordinate system has origin at the center of the galaxy andthe
+z coordinate increases with distance along the line of sight.Columns give:
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1. x position (pc)
2. y position (pc)
3. z position (pc)
4. vx velocity (km/s; includes observational error)
5. vy velocity (km/s; includes observational error)
6. vz velocity (km/s; includes observational error, perspective effect due to systemic proper motion
and los-component of binary-orbital motion)
7. δ(vx) (km/s; observational error forx velocity in column 4)
8. δ(vy) (km/s; observational error fory velocity in column 5)
9. δ(vz) (km/s; observational error forz velocity in column 6)
10. vx velocity as drawn directly from DF (i.e., before including observational errors and perspec-
tive effect; km/s)
11. vy velocity as drawn directly from DF (i.e., before including observational errors and perspec-
tive effect; km/s)
12. vz velocity as drawn directly from DF (i.e., before including observational errors, perspective
effect and/or binary motions; km/s)
13. vb (km/s; LOS velocity due to binary orbital motion; this is already included in thevz velocity
given in column 6)
14. Mg index (Angstroms)
15. δ(Mg) (Angstroms, observational error for Mg index in column 15)
16. Right Ascension (radians)
17. Declination (radians)
18. Right Ascension of center of galaxy (radians; will be either Fornax’s or Sculptor’s)
19. Declination of center of galaxy (radians; will be eitherFornax’s or Sculptor’s)
20. probability of membership (evaluated using EM algorithm of Walker et al. (2009)
21. Which component is star drawn from (1=member component 1, 2=member component 2,
3=foreground)?

The associated file [model_name]_6d.samplepars gives parameters that fully specify the input
model. Columns of its single line give:

1. systemicvz velocity (km/s)
2. 〈Mg〉1 = 〈Mg〉2 (Angstroms; difference in mean Mg index between inner (subscript 1) and outer
(subscript 2) components)
3. Nsample, number of stars in sample
4. Nmembers/Nsample; stars that are not members are drawn from foreground model
5. fraction of members that belong to member component 1 (as many as two member components
are considered)
6. µα (mas/century); systemic proper motion in RA direction
7. µδ (mas/century); systemic proper motion in Dec direction
8. γ∗, component 1
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9. β∗, component 1
10. r∗, component 1 (pc)
11. ra/r∗, component 1 (assumes Osipkov-Merritt anisotropy profile;note that isotropic models
have a large value of 104)
12. γ∗, component 2
13.β∗, component 2
14. r∗, component 2 (pc)
15. ra/r∗, component 2 (assumes Osipkov-Merritt anisotropy profile,note that isotropic models
have a large value of 104)
16. γDM

17.βDM

18. rDM (pc)
19.αDM

20. ρ0 (M⊙/pc3)
21. distance to center of galaxy (pc)
22. not applicable
23. not applicable
24. 〈Mg〉1 (Angstroms)
25. binary fraction–i.e., fraction of member stars for which z velocity received contribution from
binary motions.

Notice that the[model_name]_6d.mem2 files provide sufficient information that the user can
remove either of the member components as well as foreground, and remove observational errors,
perspective effects and binary motions as well.

We thank Pascal Steger for helpful feedback regarding earlier drafts of this document. We
thank Thomas Richardson for alerting us to a bug that caused problems with the initially-computed
DFs for anisotropic models (corrected as of 15 July 2013).
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Table 1. Tests on synthetic data: grid of input parameters for dynamical test models

Profile Parameter values considered

Stellar Subcomponent (Eq. 1)
r∗/rDM 0.10,0.25,0.50,1.0
α∗ 2
β∗ 5
γ∗ 0.1,1.0
ra/r∗ 1,∞

Dark Matter Halo (Eq. 2)
ρ0/(M⊙pc−3) 0.064 forγDM = 1, 0.40 forγDM = 0
rDM/kpc 1
αDM 1
βDM 3
γDM 0,1


