Disc Working Group

Challenges 2014

- Local Dark Matter Density
- Pattern speed of the arm and spiral Arm
- Identifying Stellar Motions associating different Spiral Arm Science
- Collaborations: Eugene Vasiliev + Besancon galaxy model (BGM) adding more self-consistent dynamical model to BGM

Local Dark Matter Density with Non-Parametric Mass Modeling

Hamish Silverwood & Sofia Sivertsson, Gianfranco Bertone (GRAPPA, UvA) Pascal Steger (ETH Zurich) Justin Read (University of Surrey)

Aims

- Determination of the local dark matter density and its uncertainty, using as few assumptions as possible.
- Critical for limits from direct detection of dark matter:

First results from the LUX dark matter experiment at the Sanford Underground Research Facility

D.S. Akerib,² H.M. Araújo,⁴ X. Bai,⁸ A.J. Bailey,⁴ J. Balajthy,¹⁶ S. Bedikian,¹⁹ E. Bernard,¹⁹
A. Bernstein,⁶ A. Bolozdynya,² A. Bradley,² D. Byram,¹⁸ S.B. Cahn,¹⁹ M.C. Carmona-Benitez,^{2,14}
C. Chan,¹ J.J. Chapman,¹ A.A. Chiller,¹⁸ C. Chiller,¹⁸ K. Clark,² T. Coffey,² A. Currie,⁴ A. Curioni,¹⁹
S. Dazeley,⁶ L. de Viveiros,⁷ A. Dobi,¹⁶ J. Dobson,¹⁵ E.M. Dragowsky,² E. Druszkiewicz,¹⁷ B. Edwards,^{19, *}
C.H. Faham,^{1,5} S. Fiorucci,¹ C. Flores,¹³ R.J. Gaitskell,¹ V.M. Gehman,⁵ C. Ghag,¹¹ K.R. Gibson,²
M.G.D. Gilchriese,⁵ C. Hall,¹⁶ M. Hanhardt,^{8,9} S.A. Hertel,¹⁹ M. Horn,¹⁹ D.Q. Huang,¹ M. Ihm,¹² R.G. Jacobsen,¹²
L. Kastens,¹⁹ K. Kazkaz,⁶ R. Knoche,¹⁶ S. Kyre,¹⁴ R. Lander,¹³ N.A. Larsen,¹⁹ C. Lee,² D.S. Leonard,¹⁶
K.T. Lesko,⁵ A. Lindote,⁷ M.I. Lopes,⁷ A. Lyashenko,¹⁹ D.C. Malling,¹ R. Mannino,¹⁰ D.N. McKinsey,¹⁹
D.-M. Mei,¹⁸ J. Mock,¹³ M. Moongweluwan,¹⁷ J. Morad,¹³ M. Morii,³ A.St.J. Murphy,¹⁵ C. Nehrkorn,¹⁴
H. Nelson,¹⁴ F. Neves,⁷ J.A. Nikkel,¹⁹ R.A. Ott,¹³ M. Pangilinan,¹ P.D. Parker,¹⁹ E.K. Pease,¹⁹ K. Pech,²
P. Phelps,² L. Reichhart,¹¹ T. Shutt,² C. Silva,⁷ W. Skulski,¹⁷ C.J. Sofka,¹⁰ V.N. Solovov,⁷ P. Sorensen,⁶

Introduction - LUX Dirrect Detection

Direct Detection Assumptions

The energy spectrum of WIMP-nucleus recoils is modeled using a standard isothermal Maxwellian velocity distribution [38], with $v_0 = 220$ km/s; $v_{\rm esc} = 544$ km/s; $\rho_0 = 0.3 \text{ GeV/cm}^3$; average Earth velocity of 245 km s⁻¹, and Helm form factor [39, 40]. We conservatively model no signal below 3.0 keV_{nr} (the lowest energy for which a direct light yield measurement exists [30, 41], whereas indirect evidence of charge yield exists down to 1 keV_{nr} [42]). We do not profile the unce in NR yield, assuming a model which provides agreement with LUX data (Fig. 1 and Fig. 6), in to being conservative compared to past works $\sqrt{2}$ also do not account for uncertainties in astro 5 ection 10⁻⁴⁴ parameters, which are beyond the scope of this w are discussed in [43]). Signal models in S1 an obtained for each WIMP mass from full simulat WIMP-nucleon cross

Lewin & Smith, Astroparticle Physics 6 (1996) 87-112

Dark Matter Disc & Dark Matter Indirect Detection

- The galactic stellar/gas disc causes merging satellites to be dragged preferentially towards the disc plane, where they are torn apart by tides.
- Gives a co-rotating dark matter disc of density ~0.25-1.5 times the non-rotating halo density. [Read et.al. 2009]
- Due to its low relative velocity, such a dark matter disc would be of utmost importance for WIMP dark matter indirect detection with neutrinos.
- Boosts the neutrino signal from the Sun by a factor of ~10 and from the Earth by a factor of ~1000.

Experimentalists

Direct Detection, e.g. XENON100/1T Indirect Detection e.g. ANTARES/KM3NET neutrino telescopes

ITFA - Institute for Theoretical Physics Amsterdam

Exploration of Theoretical Parameter Space, e.g. Supersymmetry

GRavitation AstroParticle Physics Amsterdam

Astronomy

ASTRONOMICAL INSTITUTE ANTON PANNEKOEK

Method

Pascal Steger's talk yesterday:

ETH zürich

Non-Parametric Jeans Modelling

$$\rho(r) = Ar^{-n(r)}, \qquad n(r) = -\frac{d \log \rho(r)}{d \log r}$$
$$\rho(r) = \rho_{1/2} \cdot \exp\left[-\int_{\log r_{1/2}}^{\log r} n(s) ds\right]$$

Method - Radial to Vertical

Pascal Steger's talk yesterday:

Instead of modelling mass in radial bins, model mass in vertical bins above/below the galactic plane.

Use this to model

- tracer density
- Dark Matter mass density
- Baryonic mass density

Method - Jeans Analysis

z-Jeans Equation:

Method - Analysis Flow

Results - Very Preliminary

 10^{6} I5 minutes CPU 10^5 10^4 time 10^{3} 10^{2} $[\#/pc^3]$ $[{
m M}_{\odot}/{
m pc}^3]$ 10^4 10^{1} 10^{-1} 10^{-1} Needs more u_1 10^{-2} 10^{-3} time to converge 10^{-4} 10^3 -5 10^{-10}

 10^{-2}

 \mathcal{Z}

 10^{-1}

[kpc]

 10^{0}

 10^{-1}

 \boldsymbol{z}

[kpc]

 10^{0}

 10^{-2}

Roadmap

- Get method fully working on Justin Read's ID mock data
- Determine level of data needed to distinguish DM from baryonic, distinguish a dark disk
- Apply to SDSS RAVE data
- Release assumptions e.g. reintroduce tilt term, rotation term
- Introduce more detailed baryonic models and observational constraints.
- Move to 2D, and eventually 3D
- Introduce Gaia error modeling

Pattern Speed of the Bar (and Spiral Arms) Laurent Chemin, Daniel Pfenniger, Merce Romero-Gomez, Jason Hunt, Daisuke Kawata

- Objective Recovering Bar and Pattern speed from Mock data
- Method

Local Tremaine-Weinberg method: using grid and SPH derivatives M2M: PRIMAL

Pattern speeds

- What is a pattern ?
- Definitions :

- Ωt
- A pattern is a function of coordinates that is constant in time through a rotation proportional to time.
- The pattern speed is the angular speed that keeps the pattern constant.
- Remarks :
 - Different patterns may lead to different pattern speeds
 - Bars and spirals are not rigid bodies

Pattern of modes

- Example :
 - Fourier transform of mode *m* of a ring of particles

$$F(m) = F_R(m) + j F_I(m) = \sum_{i=1}^{N} w_i [\cos(m a(t)) + j \sin(m a(t))]$$

a(t) = arctan (y_i(t), x_i(t))
mode phase :
$$\varphi = \arctan(F_I(m), F_R(m))$$

$$\Theta = \frac{d \Phi}{d t} = \frac{m}{|F(m)|^2} \sum_{i=1}^{N} w_i \left[F_R(m) \cos(m a_i) + F_I(m) \sin(m a_i) \right] \frac{L_i}{R_i^2}$$

Local TW method

- Density gradients define shapes. Using continuity equation Tremaine & Weinberg (1984) deduced a global pattern speed formula
- Advantage:
 - Radial velocity component sufficient for external galaxies
 - No gradient required
- Problems:
 - galaxies may have distinct patterns at different locations
 - Unsuited for MW
- However the local formula holds

$$\Omega_{p} = \frac{\nabla \cdot (\rho \dot{v})}{x \partial_{y} \rho - y \partial_{x} \rho}$$

Local TW method

- Repeat Laurent Chemin analysis of the Daisuke Kawata N-body sample (1 M particles)
- Matlab code (1 page)
- Pattern speed of the bar -32 km/s/kpc
- Pattern speed of the spiral -21 km/s/kpc

Small denominator => problems

|Den| > 1e-10, much better

Median Omega is robust

Median Omega is robust

Information robust zones away from bar axes

Ln 92 Col 1

Density waves pattern speeds

Tremaine-Weinberg method (Tremaine & Weinberg 1984)

$$\Omega_p \int_{-\infty}^{\infty} \Sigma(x, y, t) x \, dx = \int_{-\infty}^{\infty} \Sigma(x, y, t) v_y(x, y, t) \, dx$$

Angular speed maximum in the bar ~ 28 km/s/kpc

Mock data with extinction and errors

Angular speed more scattered in the bar region

Still consistent with input value

Smoothed Particle Local Tremaine-Weinberg method

smoothed physical value at ${\boldsymbol x}$

$$\langle f(\mathbf{x}) \rangle = \int f(\mathbf{x}') W(\mathbf{x} - \mathbf{x}', h) d\mathbf{x}'$$

W(r,h): smoothing kernel, h: smoothing length

spline kernel r=|**x**-**x**'|,

$$W(r,h) = \frac{8}{\pi h^3} \begin{cases} 1 - 6(r/h)^2 + 6(r/h)^3 \\ 2[1 - (r/h)]^3 \\ 0 \end{cases}$$

derivatives

$$\langle \nabla f(\mathbf{x}) \rangle = \sum_{j} \frac{m_j}{\rho_j} f(\mathbf{x}_j) \nabla_i W(\mathbf{x} - \mathbf{x}_j, h)$$

$$\frac{\partial}{\partial x} \left[\Sigma(x, y, t) v_x(x, y, t) \right] + \frac{\partial}{\partial y} \left[\Sigma(x, y, t) v_y(x, y, t) \right] = \Omega_p \left(y \frac{\partial \Sigma}{\partial x} - x \frac{\partial \Sigma}{\partial y} \right)$$

Mock data: GD3 (Jason Hunt) N-body barred disc spanshot

Smoothed Particle Local Tremaine-Weinberg method: all data

Smoothed Particle Local Tremaine-Weinberg method: M0III tracers

Over estimate the pattern speed

Smoothed Particle Local Tremaine-Weinberg method: 0.5<|z|<1 kpc

TW method useful for identifying the bar position?

$$\frac{\partial}{\partial x} \left[\Sigma(x, y, t) v_x(x, y, t) \right] \\ + \frac{\partial}{\partial y} \left[\Sigma(x, y, t) v_y(x, y, t) \right] \\ = \Omega_p \left(y \frac{\partial \Sigma}{\partial x} - x \frac{\partial \Sigma}{\partial y} \right) \\ \left(y \frac{\partial \Sigma}{\partial x} - x \frac{\partial \Sigma}{\partial y} \right)$$
 is small.

Scrutinising the nature of spiral arms

Observational signatures in stellar kinematics

Rob Grand, Hoda Abedi, Victor Debattista, Francesca Figueras Jason Hunt, Lucie Jilkova, Daisuke Kawata Carmen Martinez-Barbosa, Santi Roca-Fabrega,

Mock data suite

- Kawata et al. 2014 Co-rotating spiral arms, N-body
- Debattista 2014 Grand design N-body model
- Roca-Fabrega et al 2014 Imposed TWA density waves (unbarred), test particles
- Roca-Fabrega et al 2014 Strong bar N-body (manifolds)

N-body model, **co-rotating** spiral arms (Kawata et al. 2014)

Bin in heliocentric distance —> get kinematics in each bin

N-body model, **co-rotating** spiral arms (Kawata et al. 2014)

behind

in the spiral

in front

u=radial velocity v=rotational velocity

plots courtesy of Lucie Jilkova!!!

N-body model from Debattista 2014

N-body model from Debattista 2014

behind

in the spiral

in front

Test particle, density waves (Roca-Fabrega et al.)

behind

in the spiral

in front

N-body, strong bar, manifolds (Roca-Fabrega et al. 2014)

N-body, strong bar, manifolds (Roca-Fabrega et al. 2014)

SNAPDRAGONS (Hunt, Kawata, Grand et al. in prep)

Co-rotating spirals

Debattista 2014

d = 6.4--7.4 kpc

Manifolds

What's next?

writing up some Gaia Challenge papers
 Local density
 Pattern speed of the bar
 Stellar motions around the different kind of spiral arms

What's next?

More realistic Gaia mock data

Current mock: 3D extinction, Gaia erros

Missing: Multiple disk components (thick and thin disks), stellar population

More challenges

Identifying the disc plane tilt Identifying spiral arm and pattern speed Whole disc mass model