3D test particle simulations of the Galactic disks. The kinematical effects of the bar.

Giacomo Monari, Teresa Antoja & Amina Helmi

Motivation

- Understanding kinematical substructure in the MW
- Disentangle causes: external (e.g., accretion) and internal (e.g., non-axisymmetric components)
- Esp. in the thick disk and far from the plane
- Here we address internal causes: bar effects

Methods

- Test particle simulations
- * 3D
- Thin and thick disk

Test particle simulations

- Integrated forward in time
- Rigid potential 3D
 - NFW halo
 - Thin and thick Miyamoto-Nagai disks (mass ratio 5:1)
 - Rotating Ferrers bar ($\Omega_b = 50 \text{ km/sec/kpc}$)

Simulations

(Monari, Antoja & Helmi 2013, arXiv: 1306.2632)

ICs tracer populations:

- * Density: Miyamoto-Nagai disks \leftrightarrow potential
- Kinematics:
 - σ_{R} : smooth exp. fall off
 - σ_{Φ} : epicyclic approximation
 - σ_z : vertical Jeans equation, assuming $\langle v_R v_z \rangle = 0$

THIN DISK	THICK DISK
$\sigma_{R}(R_{0}) \sim 45 \text{km/sec}$	$\sigma_{R}(R_{o}) \sim 60 \text{ km/sec}$
z _{thin} ~0.3kpc	z _{thick} ~1kpc
R _d =3kpc	R _d =3kpc

Results: time evolution of SN

- After bar introduction kinematics SN strongly influenced, esp. in correspondence with OLR
- * Transient effects for $\sim 10T_{b}$, then stable configuration
- * $24T_{b}$ ~3Gyr default integration time.

Results: time evolution of SN

- After bar introduction kinematics SN strongly influenced, esp. in correspondence with OLR
- * Transient effects for $\sim 10T_{b}$, then stable configuration
- * $24T_{b}$ ~3Gyr default integration time.

Results: above the Galactic plane

Results: above the Galactic plane

Results: above the Galactic plane

(Monari, Antoja & Helmi 2013, arXiv: 1306.2632)

Antoja, Helmi & RAVE coll. 2012, MNRAS, 426, L1

Moving groups extended on and above Galactic plane

The $\langle v_R \rangle$ gradient in the MW and the bar

- Siebert et al. (2011); Williams et al. (2013): d(v_R)/dR~-3km/sec/kpc from RAVE
- * Bar creates $\langle v_R \rangle$ gradients nearby OLR
- * For $\varphi\langle 0$ and $R\rangle R_{OLR}$ gradient is negative

Conclusions

- 3D test particle simulations with bar, thin and thick disk
- * Thick disk less affected by bar than thin, but significant substructure/imprints present
- Possible to trace bar effects z~1kpc thin disk, z~2kpc thick disk (akin Antoja et al., 2012)
- * Bar induces large scale $d\langle v_R \rangle/dR\langle 0$, outside the OLR (cfr. Siebert et al. 2011, Williams et al. 2013)

The $\langle v_R \rangle$ gradient in the MW and the bar

