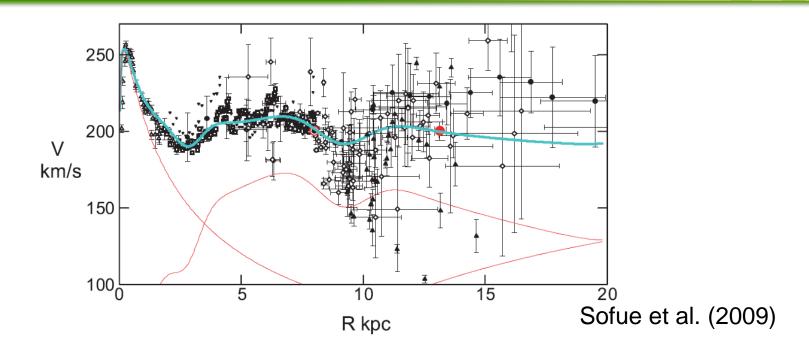
Can Gaia conclude the local dark matter density problem?

Korea Astronomy and Space Science Institute (KASI) Shigeki Inoue

"Astrometric mock observations for determining the local dark matter density" Inoue & Gouda (2013) A&A, 555, A105

The Galactic DM halo



The Galactic rotation curve

- The analysis has to assume spherical symmetry.

• The DM density at the solar radius

- e.g. Sofue (2012) $\rho_{DM,RC} \cong 0.006 \text{ M}_{\odot}/\text{pc}^3$

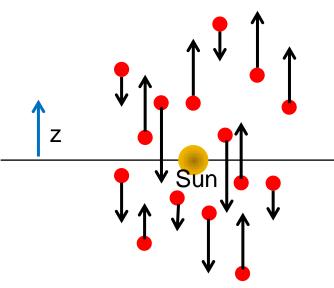
• However, the Galactic halo may not be spherical.

LDMD determination by vertical motions

- How is the LDMD determined?
 - an old problem; since Oort (1932, 1960), Hill (1960)
 - z-Jeans eq. for dynamical tracers

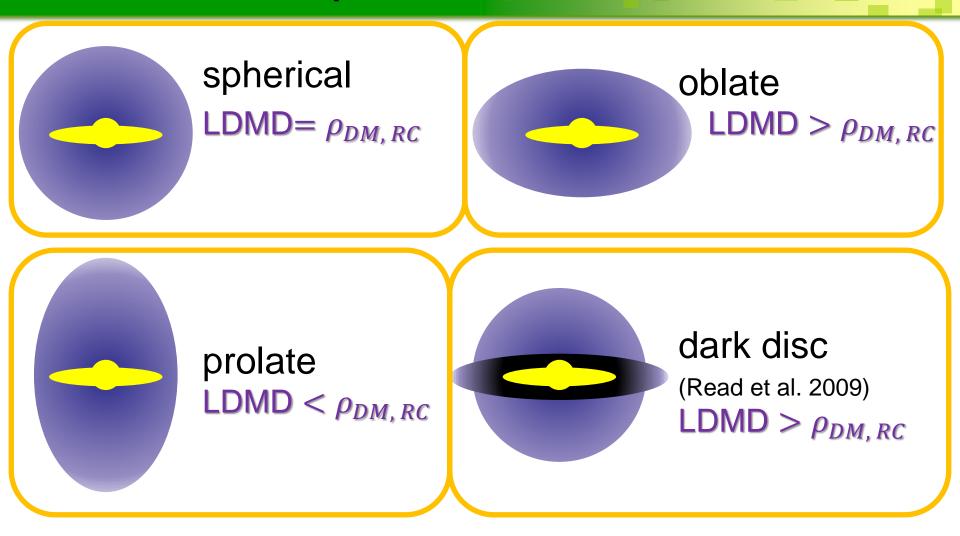
•
$$\frac{\partial}{\partial z}(\rho\sigma_z^2) + \rho\frac{\partial\Phi}{\partial z} = 0$$

• or Boltzmann eq.



- If we know (or assume) ρ and σ_z , Φ can be derived.
- Baryonic density can be subtracted, then we can determine the DM density.

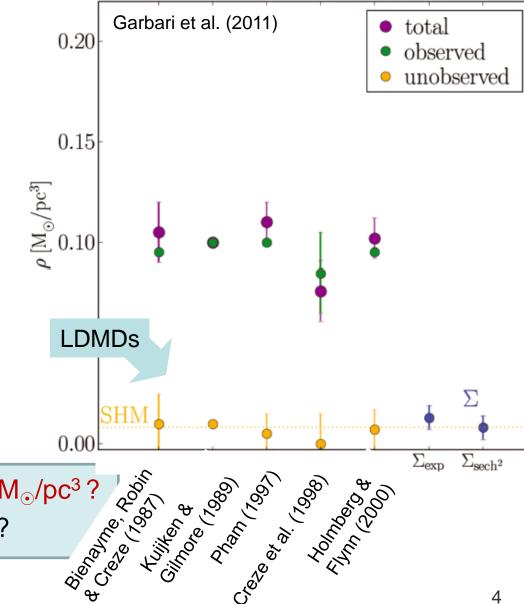
DM halo shape and the LDMD



It may give us a hint on the DM halo shape to compare the $\rho_{DM,RC}$ with the LDMD.

LDMDs in previous studies

- Garbari et al. (2011)
 LDMD ≅ 0.033 M_☉/pc³
- Garbari et al. (2012)
 LDMD ≅ 0.022 M_☉/pc³
- Bovy & Tremaine (2012)
 LDMD ≅ 0.008 M_☉/pc³
- Smith et al. (2012)
 LDMD ≅ 0.015 M_☉/pc³
- Zhan et al. (2013)
 - LDMD \cong 0.006 M_{\odot}/pc³
- conversing on $\sim 0.006 0.033 \text{ M}_{\odot}/\text{pc}^3$?



The aim of this study

- This study performs "mock" observations of astrometry.
 - to scrutinize a method
 - Minimal Assumption method (Garbari et al. 2011, 2012)
 - Are there intrinsic systematic errors in the method?
 - to estimate observational precisions required to determine the LDMD with accuracy.
 - Were the Hipparcos observations precise enough?
 - Are the Gaia observations precise enough?

• the Minimal Assumption method

- cf. Garbari et al. (2011, 2012)

The MA method by Gairbari et al. (2011, 2012)

- The Minimal Assumption (MA) method
- Assumptions
 - 1. The system is in equilibrium
 - 2. DM density is constant in the region we consider (z < 1.2 kpc)
 - 3. The "tilt" term is negligible in Jeans equation

Step1 Choose trial parameters

• the LDMD; ρ_{DM}

12 J

• 15 baryon components; $\rho_{i,0}$, $\sigma_{z,i}$ at z = 0

• Step2 Solve the equations below, compute the trial potential $\Phi(z)$

•
$$\frac{\partial^2 \Phi}{\partial z^2} = 4\pi G(\rho_b + \rho_{DM})$$

• $\rho_b = \sum \rho_{i,0} exp\left(-\frac{\Phi(z)}{\sigma_{z,i}^2}\right)$ isothermal disc model

The MA method (galaxy model)

Flynn et al. (2006)

#	Component	$ ho_i^{ m ass}(0)$ [M $_{\odot}$ p (observation		$\sigma_{z,i}(0)$ [km s ⁻¹] (observation)
1	H_2	0.021	or Sr	4.0 ± 1.0
2	HI(1)	0.016	50% error	7.0 ± 1.0
3	HI(2)	0.012	n n	9.0 ± 1.0
4	Warm gas	0.0009		40.0 ± 2.0
5	Giants	0.0006		20.0 ± 2.0
6	$M_{v} < 2.5$	0.0031		7.5 ± 2.0
7	$2.5 < M_v < 3.0$	0.0015		10.5 ± 2.0
8	$3.0 < M_v < 4.0$	0.0020	or	14.0 ± 2.0
9	$4.0 < M_v < 5.0$	0.0022	error	18.0 ± 2.0
10	$5.0 < M_v < 8.0$	0.007	• •	18.5 ± 2.0
11	$M_v > 8.0$	0.0135	20%	18.5 ± 2.0
12	White dwarfs	0.006	\sim	20.0 ± 5.0
13	Brown dwarfs	0.002		20.0 ± 5.0
14	Thick disk	0.0035		37.0 ± 5.0
15	Stellar halo	0.0001		100.0 ± 10.0

• Densities and velocity dispersions at z=0

The MA method by Gairbari et al. (2011, 2012)

- Necessary observations of tracer stars
 - density profile: $\rho_{trac}(z)$
 - velocity dispersion profile: $\sigma_{z,trac}^2(z)$

Step3 predict the tracer density profile

- input $\sigma_{z,trac}^2(z)$ and the trial potential $\Phi(z)$ into Jeans equation,

•
$$\rho_{pred}(z) = \rho_{pred}(z_{min}) \frac{\sigma_{z,trac}^2(z_{min})}{\sigma_{z,trac}^2(z)} exp\left\{-\int_{z_{min}}^{z} \frac{1}{\sigma_{z,trac}^2(z')} dz'\right\}$$

non-isothermal

Step4 compare the predicted and the observed density fall-off

- evaluate goodness-of-fit
- MCMC: go back to step1

see Garbari et al. (2011, 2012) 9

Mock galaxy model Mock tracer model

Mock galaxy and tracer models

- I assume "mock" density distributions for a galaxy model.
- Density profiles for the 15 baryon components and DM

– baryon	$\rho_i(z) = \rho_{0,i} \operatorname{sech}^2(z/h_{z,i})$	#	Component	$ ho_i^{ m ass}(0) \ [{ m M}_\odot \ { m pc}^{-3}] \ (m observation)$
 for each of t 	1	H ₂	0.021	
with each scale height			HI(1)	0.016
			HI(2)	0.012
 dark matter 	$ ho_{DM}=0.01~{ m M}_{\odot}/{ m pc}^3$	4	Warm gas	0.0009
	$p_{DM} = 0.01 \text{ M}_{\odot}/\text{pc}$	5	Giants	0.0006
		6	$M_v < 2.5$	0.0031
		7	$2.5 < M_v < 3.0$	0.0015
		8	$3.0 < M_v < 4.0$	0.0020
		9	$4.0 < M_v < 5.0$	0.0022
		10	$5.0 < M_v < 8.0$	0.007
		11	$M_v > 8.0$	0.0135
		12	White dwarfs	0.006
		13	Brown dwarfs	0.002
		14	Thick disk	0.0035
		15	Stellar halo	0.0001

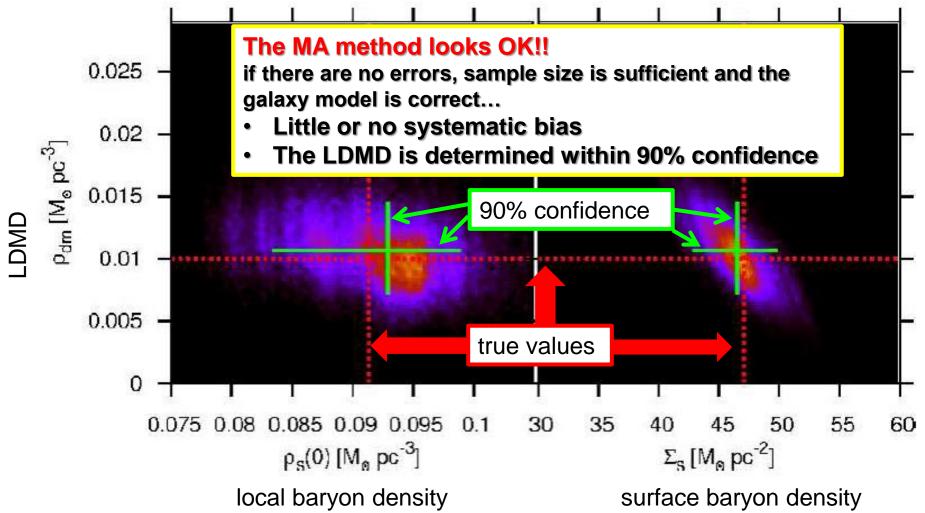
• If a tracer density profile is assumed, $\sigma_{z,trac}^2(z)$ can be calculated.

-
$$\rho_{trac}(z) \propto \operatorname{sech}^2(z/400 \ pc)$$

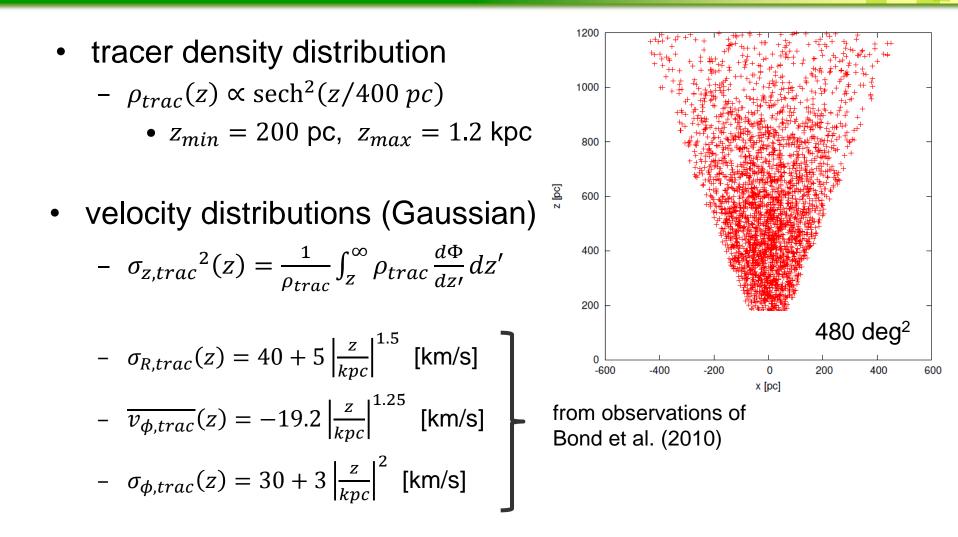
$$- \sigma_{z,trac}^{2}(z) = \frac{1}{\rho_{trac}} \int_{z}^{\infty} \rho_{trac} \frac{d\Phi}{dz'} dz'$$

test of the MA method with the analytic solutions

• MCMC outputs: PDFs of the parameters.



Mock tracer model & observations



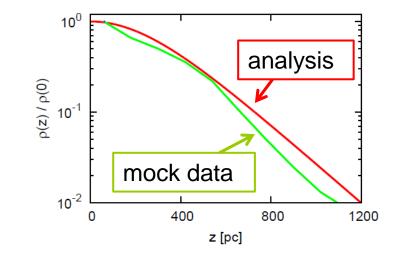
The mock observations are 3D, but the variations of ρ_{trac} and σ_{trac} are 1D.

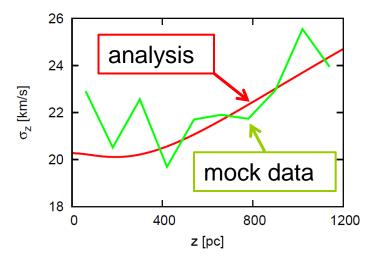
Mock tracer model & observations

- tracer density distribution
 - $\rho_{trac}(z) \propto \operatorname{sech}^2(z/400 \ pc)$
 - $z_{min} = 200 \text{ pc}, \ z_{max} = 1.2 \text{ kpc}$
- velocity distributions (Gaussian)

$$- \sigma_{z,trac}^{2}(z) = \frac{1}{\rho_{trac}} \int_{z}^{\infty} \rho_{trac} \frac{d\Phi}{dz'} dz'$$

$$- \sigma_{R,trac}(z) = 40 + 5 \left| \frac{z}{kpc} \right|^{1.5} \text{ [km/s]}$$
$$- \overline{v_{\phi,trac}}(z) = -19.2 \left| \frac{z}{kpc} \right|^{1.25} \text{ [km/s]}$$
$$- \sigma_{\phi,trac}(z) = 30 + 3 \left| \frac{z}{kpc} \right|^{2} \text{ [km/s]}$$

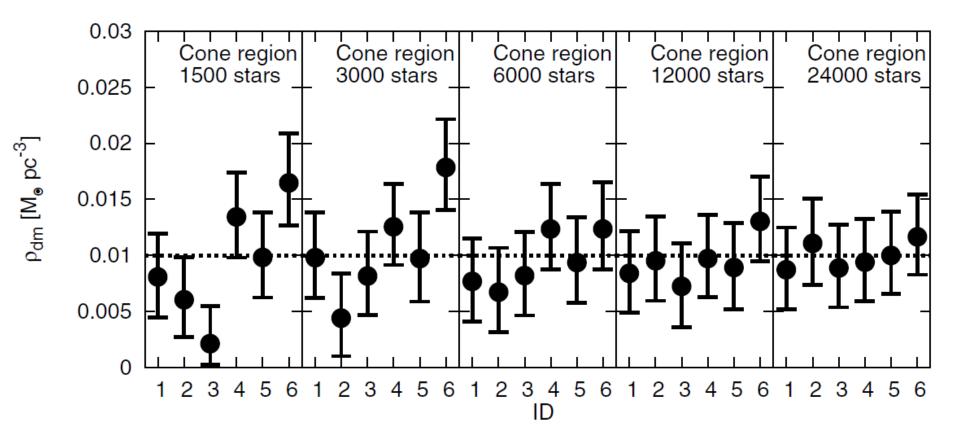




Mock observations required sample size

Required sample sizes

~>6000 stars are required to determine the LDMD

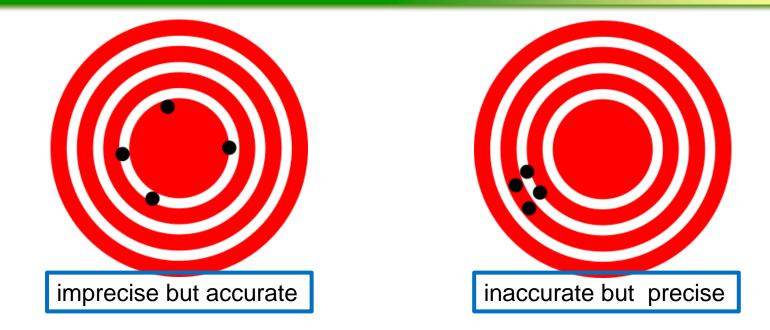


The error bars are indicating 90% confidence levels.

Mock observations

- required observational precisions

What is advantage of astrometry?



- Astrometry is imprecise, but accurate.
 - systematic errors << random errors
 - The errors are already-know.
- In this study, observational uncertainties are assumed to be random Gaussian errors.

Mock distance errors

- In astrometry, distance errors can be formalized as follows:
 - Stellar image centroids are determined by photon statistics
 - $\sigma_{\varpi} \propto 1/\sqrt{f} \propto d$
 - fractional parallax error
 - $\sigma_{\varpi}/\varpi \propto d^2$
 - fractional parallax error is equal to fractional distance error (FDE).

$$\varepsilon_{\rm FDE} = A \left(\frac{d}{\rm kpc}\right)^2$$

- A corresponds to parallax precision in mas at d = 1 kpc.

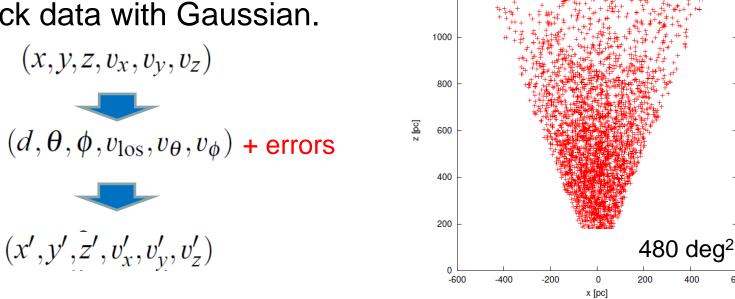
400

600

Mock distance errors

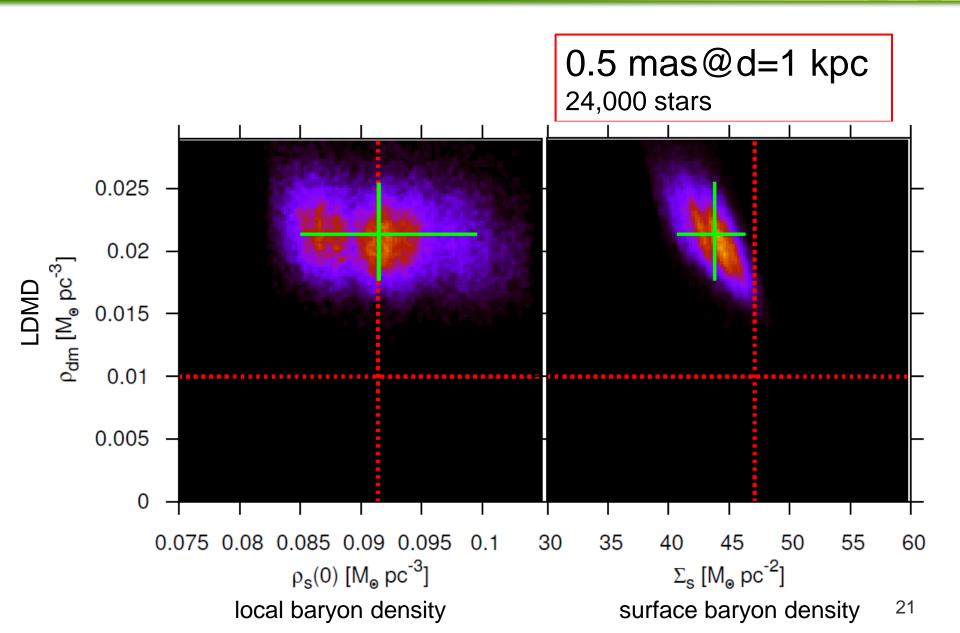
 Applying the distance errors to the mock data with Gaussian.

- Moreover, the distance errors propagete to transverse velocities.
 - $v'_{\theta} = v_{\theta} \frac{d'}{d}$ $v_{\theta} = d \times \mu_{\theta}$

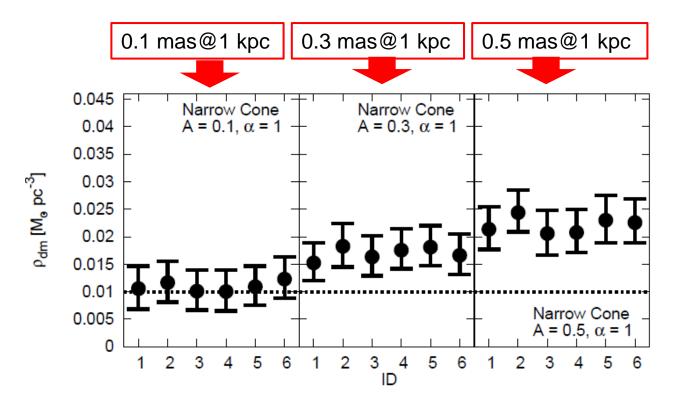


1200

Mock distance errors



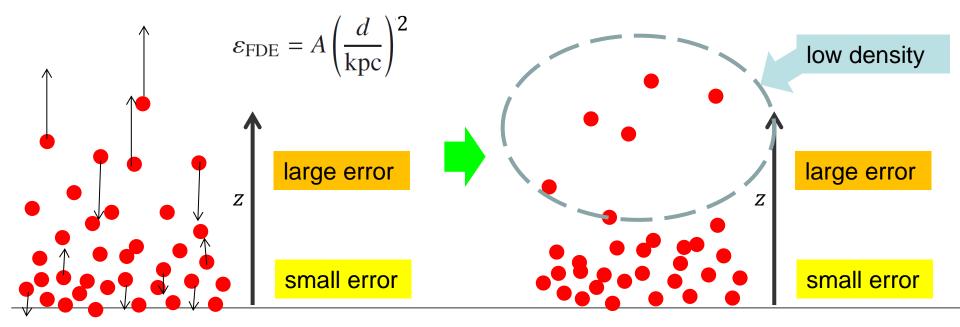
Mock distance errors



- The parallax errors can cause a systematic overestimate of the LDMD.
- Required parallax precision is <u>0.1-0.3 mas @ d=1 kpc</u>
 - Hipparcos ~1mas @ d=100 pc
 - Gaia ~0.06 mas @ d= 1kpc for K stars

Why overestimate?

- The distance errors are *random* Gaussian.
 - However, the LDMD was systematically overestimated.



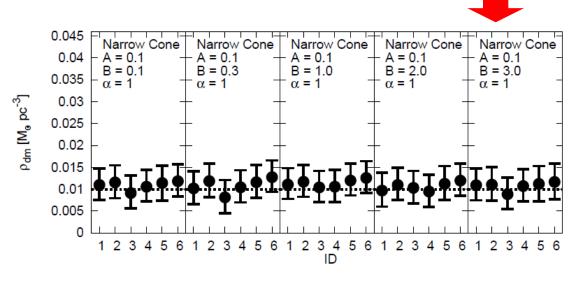
- Large distance errors in high-z region makes the disc thinner than the real.
- The thinner disc prefers a deeper potential.
- The deeper potential means a higher LDMD.

Proper motion errors

• Proper motion errors also vary with distance in the same way as parallaxes.

$$\varepsilon_{\mu} = B\left(\frac{d}{\mathrm{kpc}}\right) \,\mathrm{mas}\,\mathrm{yr}^{-1}$$

- The proper motion errors little affect the LDMD determinations.
- It is because proper motions have little information about v_z



3 mas/yr @1 kpc

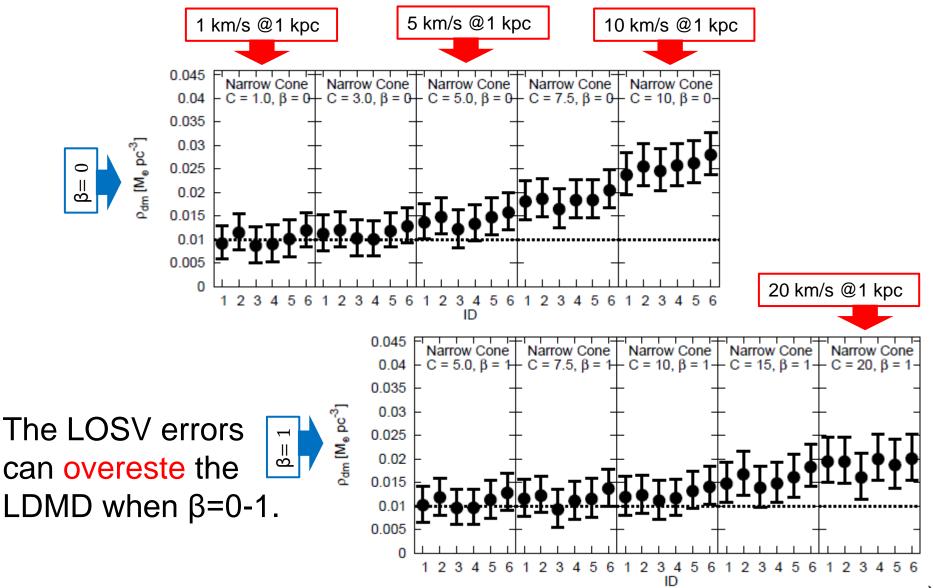
Mock line-of-sight velocity errors

- LOSV measurements are independent from astrometric observations.
 - Gaia is designed to measure LOSVs simultaneously.
- Distance-dependence of LOSV errors is highly complicated.

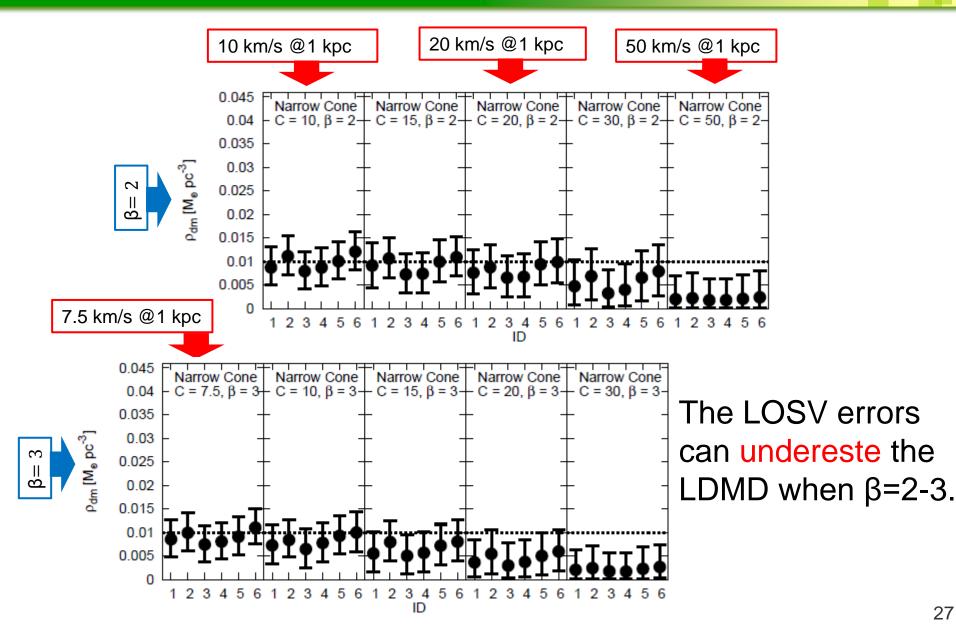
$$\varepsilon_{losv} = C \left(\frac{d}{\text{kpc}}\right)^{\beta} \text{km s}^{-1} \quad \beta = 0,1,2 \text{ or } 3$$

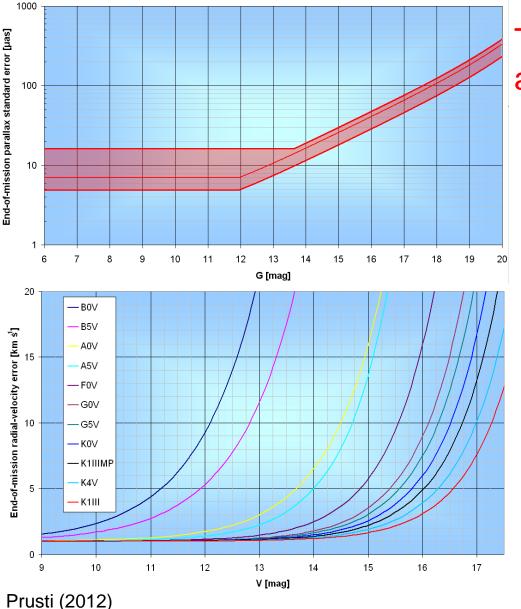
• $\beta = 2 - 3$ is the most likely for *Gaia*.

Mock line-of-sight velocity errors



Mock line-of-sight velocity errors



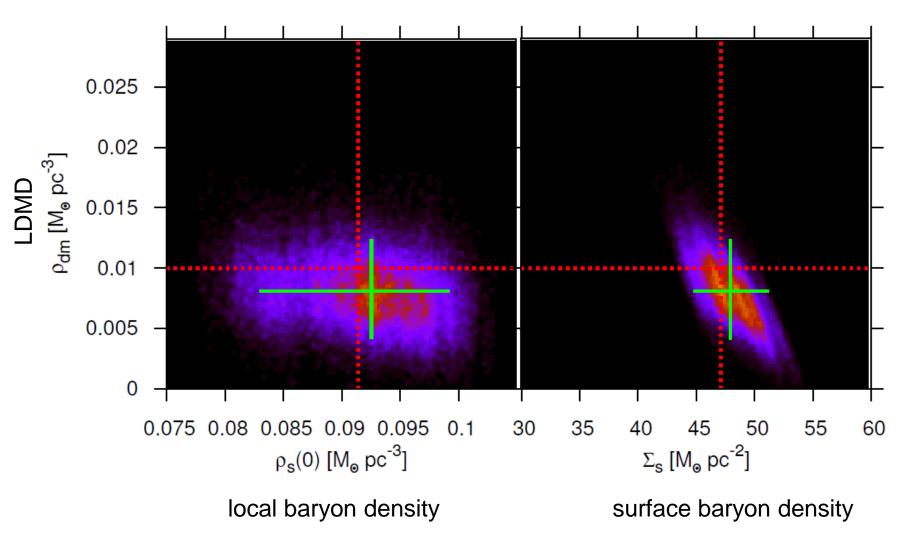


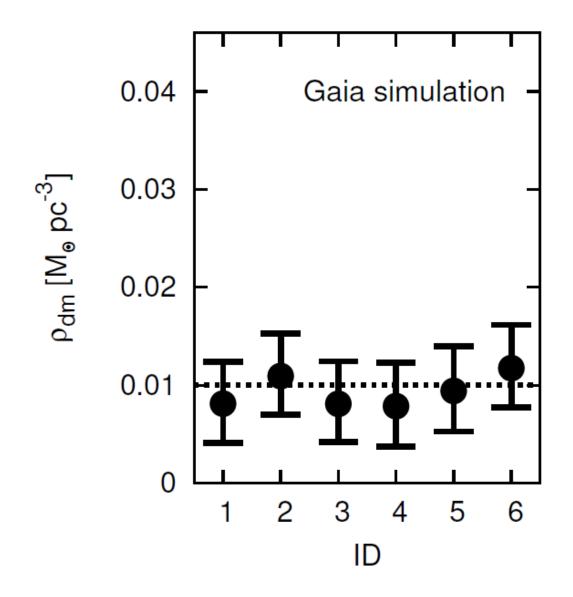
Tracer stars used frequently are K dwarf stars.

- K stars
 - $M \cong 7 \Rightarrow m \cong 17 @ 1 \text{ kpc}$
- parallax error = 0.06 mas
- PM error = 0.06 mas/yr
- LOSV error = 10 17 km/s

• β=2-3

- $z_{min} = 200 \text{ pc}, \ z_{max} = 1.2 \text{ kpc}$
- conical region 480 deg²
 - sample size = 24,000 stars





Summary

- method
 - The MA method seems promising.
 - little or no systematic errors
 - if sample size and observational precisions are sufficient.
- required observational precisions
 - Parallax precision must be < 0.1-0.3 mas @ d=1 kpc (would be a necessary condition)
 - Otherwise, distance errors can cause overestimation.
- Gaia & Hipparcos
 - Gaia can exceed the required precisions.
 - Hipparcos catalogue is not sufficient.
 - more calculations → Inoue & Gouda (2013) A&A, 555, A105 32