AIA CHALLENGE

Summary of Spherical \& Triaxial Working Group

Goals

1) Realistic mocks for general community
2) Accuracies of mass/orbit modeling methods for dwarf spheroidals pre- \& post-GAIA

Participants

Justin READ, Surrey Leader, Mocks \& GravImage Jeans method
Matt WALKER, Carnegie-Mellon Mocks \& Jeans methods
Jorge PEÑARRUBIA, Edinburgh Mocks
Gary MAMON, IAP, Paris
Laura WATKINS, STScl
MAMPOSSt method
Jeans method

Payel DAS, Oxford
Mao-Sheng LIU, CMU

DF of actions method
Support Distribution Machine method

Absent but provided some analyses:
John MAGORRIAN, Oxford DF of actions \& orbit-modeling methods

6D Mocks

all assume negligible mass for stellar component

8 + 4 +2 Spherical Walker \& Peñarrubia

$8+2$ based on analytical distribution function
from isotropic or Osipkov-Merritt (OM) velocity anisotropy
4 based on Made-to-Measure (see Triaxial)
Cuspy (NFW) or Cored potentials
Cuspy (general Plummer) or Cored (~ Plummer) tracers Last 2 come with subpopulation info

2 Triaxial Dehnen \& Wilkinson

based on Made-to-Measure ~ N-body code
Cuspy (NFW) or Cored potentials; Cored (Plummer) tracers

4 Tidally Stripped Read

based on N-body code of dwarf orbiting MW-like potential Orbits of different pericenters, traced at fixed time Cuspy (NFW) or Cored potentials; Cored (Plummer) tracers

Unique 6D samples

for all data sets :

- 20 subsamples of $N=10000,1000$ (5x) \& 100 (10x) stars
- without or with 2 km/s velocity erroros
J. Read, this workshop

$\rightarrow 20 \times 2 \times[(8+4)+2+4]=7206 \mathrm{D}$ mocks

Projected mocks

2+1D (sky position \& LOS velocity)
\& 5D (sky position, LOS \& POS velocities)
3 or 4 viewing axes (principal plus intermediate for Triaxial)

$$
\rightarrow 20 \times 2 \times[3 \times(8+4+2)+4 \times 2+3 \times 4]=2480 \text { projected mocks! }
$$

Methods

Method	Person / Reference	Input	Assumptions	Speed	Cases run
Jeans	Walker / Strigari+07	Discrete LOS	Gaussian LOS velocities	Very fast	
MAMPOSSt	Mamon+13	Discrete LOS	Gaussian 3D velocities	Intermediate	~ 600
Watkins	Watkins+13	$\begin{gathered} \text { Discrete LOS } \\ + \text { POS } \end{gathered}$	Gaussian 3D velocities	Intermediate	~ 10
parametric Action	Das+15	$\begin{aligned} & \text { Discrete LOS } \\ & + \text { POS } \end{aligned}$	$D F=f($ Actions $)$	Intermediate	
Gravlmage	Read \& Steger	Binned LOS surf. dens. + vel. disp.		Slow	(~10)
Orbit modeling	Magorrian	$\begin{gathered} \text { Discrete LOS } \\ + \text { POS } \end{gathered}$		Very slow	1
DPM	Magorrian 14	$\begin{gathered} \text { Discrete LOS } \\ + \text { POS } \end{gathered}$	DF=non- parametric mixture of actions	Very slow	1
Support Dist. Machine	Liu / Ntampaka+15	Discrete LOS	(supervised on mocks)	Very slow	

Physical outputs

radial profiles of tracer density velocity anisotropy DM mass
DM density DM slope
projected radial profiles of tracer surface density LOS velocity dispersion
median, 1-2 equiv o MLE?
parameters?
inner DM slope?
effective radius of tracer?

Progress

- Mocks now sampled
- New person(s) should join
- Paper drafting has begun

Aim: submission before end of year

4th Challenge

- Milky Way foreground
- unknown populations

