Gaia — counting down to launch

Anthony Brown

Leiden Observatory brown@strw.leidenuniv.nl

- Gaia spacecraft status
- Summary of the Gaia sky survey
- Science performance
- Launch and commissioning
- Data processing
- Catalogue and archive access

Gaia Survey Performance Commissioning Data processing Catalogue and archive

ESA Cornerstone mission within Horizon 2000+ programme
Create large and highly accurate stereoscopic map of the Galaxy
Global astrometry concept successfully demonstrated by Hipparcos

Launch in 2013 with Soyuz-Fregat from Kourou
Orbit: vicinity of L2
Mission duration 5 (+1) years

Image credit: Lund Observatory

Image credits: NASA/JPL-Caltech/R. Hurt, ESA and ATG medialab 75,000 ly

"S Arm

Launch November 2013

Images courtesy EADS-Astrium and ESA

Launch November 2013

Survey capabilities

Simulated Gaia sky - Robin et al., arXiv:1202.0132

- Three simultaneous observing modes
- Complete to G = 20 (V = 20-22)
- Observing programme: autonomous on-board detection and unbiased
- Quasi-regular time-sampling over 5 years (~ 70 observations)
- Angular resolution comparable to HST

Number of objects

- 1 billion stars to G = 20
- $10^6 10^7$ galaxies
- 500 000 quasars
- 3×10^5 solar system bodies
- tens of thousands of exoplanets

Survey capabilities

Survey capabilities

Number of field of view transits

Gaia astrometry

Apply factors ~ 0.5 and ~ 0.7 for positions and proper motions

Gaia Survey Performance Commissioning Data processing Catalogue and archive

Gaia astrometry

Gaia astrometry

Gaia spectrophotometry

Photometer

- Two channels: 330–680 nm (BP), 640–1000 nm (RP)
- Low resolution (~ 3–30 nm/pixel) prism spectra
- Allows derivation of A_V , T_{eff} , log g, [M/H], and [α /H] for brighter stars

Gaia spectrophotometry

Example of stellar parametrization performance (in this case with SVM). From Liu et al., 2012, MNRAS 426, 2463

Gaia spectroscopy

Slitless spectroscopy in Ca triplet region (847–874 nm)
 λ/Δλ ~ 11 000

Gaia spectroscopy

Stellar and interstellar parameters (conservative estimates)

 Radial velocities 	$V \le 17$	$\sim 150 \times 10^6$ stars
 Rotational velocities 	$V \le 13$	$\sim 5 imes 10^6$
 Atmospheric parameters 	$V \le 13$	$\sim 5 imes 10^6$
 Abundances 	$V \le 12$	$\sim 2 imes 10^6$
 Interstellar reddening 	$V \le 13$	$\sim 5 imes 10^6$

Diagnostics

- Binarity/multiplicity, variability
- $\sim 10^6$ spectroscopic binaries
- $\sim 10^5$ eclipsing binaries ($\sim 25\%$ SB2 \rightarrow masses)
- Long period classical Cepheids $\sigma_{v_r} < 7 \text{ km/s} \rightarrow 20\text{--}30 \text{ kpc}$

Simulate your own

<u>What</u>

- Background information on instruments and error modelling
- Interpolation tables and formulae
- Error variations on sky
- Transformations from Johnson, Sloan systems to Gaia photometric system
- Will be updated with more information on astrophysical parameter performances, other products from photometry and spectroscopy
- Simulated Gaia catalogues (billion objects) will be made available through CDS

Where

- Go to: www.rssd.esa.int/gaia, look for 'Science Performance' button
 - (or google for 'Gaia science performance')
- Python implementation at: pypi.python.org/pypi/PyGaia

Launch and commissioning

- Sunshield deployment within hours after launch
- Travel to L2 takes up to ~ 30 days
- First data received after about 40 days
- Total commissioning phase 4–6 months
 - repeatedly scanning over well characterized ecliptic pole fields
 - detailed instrument check out and performance verification

Expect first Gaia publications in 2014

- Description of Gaia 'as built'
- Detailed performance assessment
 - early indication of what can really be expected from Gaia

Image credit: Holger Voss

Data release scenario

Figure by François Mignard

Gaia Survey Performance Commissioning Data processing Catalogue and archive

Guildford 19.08.2013 - p.21/25

Data release scenario

- Assumes smooth operations!
- Each release updates the previous and contains significant new additions

October 2013 launch

L+22M Positions + G magnitude (\sim all sky, single stars)

- Includes more often scanned Ecliptic pole regions
- Hundred Thousand Proper Motions (Hipparcos-Gaia, $\sim 50 \ \mu as/yr$)
- L+28M radial velocities for bright stars, two-band photometry, and full astrometry (α , δ , ϖ , $\mu_{\alpha*}$, μ_{δ}) where available.
- L+40M full astrometry, orbital solutions for short period binaries, $(G_{BP} G_{RP})$, BP/RP Spectrophotometry and astrophysical parameters, radial velocities, RVS spectra
- L+65M Updates on previous release including more sources, source classifications, multiple astrophysical parameters, variable star solutions and epoch photometry for them, solar system results

End+3yr Everything

Efficient access to a billion source catalogue

Visualization to aid the discovery process

Reaching out to the general public

Delivering the Promise of Gaia

Seamless inter-operation with other missions and surveys

Long term archive preservation in the context of data re-use

Your ideas here

- DPAC-CU9 has started work on the Gaia catalogue and archive
- Maximizing science depends on archive that can *deliver what you* want
 - tell us how you want to access and use the Gaia data
 - feel free to go crazy...
 - think about possibilities in 2020!

- Give me all stars with a certain angular momentum
- I want to reprocess all Gaia data and study the effects of systematic errors on σ_γ
 - Requested from my iDevice...

Gaia data access use cases

- Provide your ideas through GREAT wiki pages
 - http://great.ast.cam.ac.uk/Greatwiki/GaiaDataAccess
- Many ideas collected already

►

- Reviewed and ranked according to
 - Urgency, generality, science impact, scale, expected frequency
 - ranking will be used to prioritize CU9 efforts
- All of this is summarized in a publicly available document

```
http:
//www.rssd.esa.int/SA/GAIA/docs/library/AB-026.htm
```

Please read this document and provide feedback (and keep ideas on use cases coming)!

- Average ~ 70 observations over 5 years ($\sim 20\%$ dead time)
- Varies over the sky between ~ 50 and ~ 130 ($\sim 20\%$ dead time)

- Average ~ 70 observations over 5 years ($\sim 20\%$ dead time)
- Varies over the sky between ~ 50 and ~ 130 ($\sim 20\%$ dead time)
- Crowding: incompleteness at high densities and faint magnitudes
 - Astrometric limit is $\sim 1\,000\,000$ stars deg⁻² (without bright stars)
 - Photometric limit is $\sim 750\,000$ stars deg⁻² (without bright stars)
 - Spectroscopic limit is $\sim 36\,000$ stars deg⁻² (without bright stars)
 - Up to $\sim 3\,000\,000$ stars deg⁻² can be dealt with

Gaia's view of R136, image courtesy Jos de Bruijne and Guido de Marchi

Gaia limitations

Guildford 19.08.2013 - p.28/25

Gaia's view of R136, image courtesy Jos de Bruijne and Guido de Marchi

Gaia limitations

- Average ~ 70 observations over 5 years ($\sim 20\%$ dead time)
- Varies over the sky between ~ 50 and ~ 130 ($\sim 20\%$ dead time)
- Crowding: incompleteness at high densities and faint magnitudes
 - Astrometric limit is $\sim 1\,000\,000$ stars deg⁻² (without bright stars)
 - Photometric limit is $\sim 750\,000$ stars deg⁻² (without bright stars)
 - Spectroscopic limit is $\sim 36\,000$ stars deg⁻² (without bright stars)
 - Up to $\sim 3\,000\,000$ stars deg⁻² can be dealt with
- Spatial resolution: unresolved close binaries
 - Detection depends on separation and magnitude difference

- Average ~ 70 observations over 5 years ($\sim 20\%$ dead time)
- Varies over the sky between ~ 50 and ~ 130 ($\sim 20\%$ dead time)
- Crowding: incompleteness at high densities and faint magnitudes
 - Astrometric limit is $\sim 1\,000\,000$ stars deg⁻² (without bright stars)
 - Photometric limit is $\sim 750\,000$ stars deg⁻² (without bright stars)
 - Spectroscopic limit is $\sim 36\,000$ stars deg⁻² (without bright stars)
 - Up to $\sim 3\,000\,000$ stars deg⁻² can be dealt with
- Spatial resolution: unresolved close binaries
 - Detection depends on separation and magnitude difference
- On-board processing: not optimised for extended objects
 - On paper the limit is detection up to 200 mas
 - In reality, extended objects up to 700 mas are detected

- Average \sim 70 observations over 5 years (\sim 20% dead time)
- Varies over the sky between ~ 50 and ~ 130 ($\sim 20\%$ dead time)
- Crowding: incompleteness at high densities and faint magnitudes
 - Astrometric limit is $\sim 1\,000\,000$ stars deg⁻² (without bright stars)
 - Photometric limit is $\sim 750\,000$ stars deg⁻² (without bright stars)
 - Spectroscopic limit is $\sim 36\,000$ stars deg⁻² (without bright stars)
 - Up to $\sim 3\,000\,000$ stars deg⁻² can be dealt with
- Spatial resolution: unresolved close binaries
 - Detection depends on separation and magnitude difference
- On-board processing: not optimised for extended objects
 - On paper the limit is detection up to 200 mas
 - In reality, extended objects up to 700 mas are detected
- Dynamic range: existence of a bright limit
 - The paper limit is G = 5.7 mag (V = 6 mag is normally quoted)
 - ► The real limit is a bit better (and varies from CCD row to row)
 - Investigations are ongoing to extend to $G \sim 1.5$

