Bayes vs the virial theorem

John Magorrian

Gaia Challenge Workship, Surrey, 20 August 2013 "superGaia": Gaia w/o observational errors, selection effects.

An idealised problem

superGaia gives us (\mathbf{x}, \mathbf{v}) for every star in the Galaxy. What's the gravitational potential in which they move?

Assume: collisionless,
$$\partial_t = 0 \rightarrow 2$$
 functions + Jeans thm

$$\Phi(\mathbf{x}), \qquad f(\mathbf{x}, \mathbf{v}) = f(\mathbf{J}), \qquad \mathbf{J} = \mathbf{J}(\mathbf{x}, \mathbf{v}|\Phi)$$
Want this \mathbf{J} (observations are a **discrete realisation** of this

"superGaia": Gaia w/o observational errors, selection effects.

An idealised problem

superGaia gives us (\mathbf{x}, \mathbf{v}) for every star in the Galaxy. What's the gravitational potential in which they move?

Assume: collisionless,
$$\partial_t = 0 \rightarrow 2$$
 functions + Jeans thm

$$\Phi(\mathbf{x}), \qquad f(\mathbf{x}, \mathbf{v}) \stackrel{\downarrow}{=} f(\mathbf{J}), \qquad \mathbf{J} = \mathbf{J}(\mathbf{x}, \mathbf{v}|\Phi)$$
Want this
$$\int \int \left\{ \begin{array}{c} \text{observations are a discrete} \\ \text{realisation of this} \end{array} \right\}$$

Standard methods don't work (well)

I. Parametrized DF

- Guess some form for $f(\mathbf{J}|\alpha)$, parametrised by α
- Try a Φ
- Marginalise or fiddle parameters α
- Assign likelihood to Φ.

But what if your guess for $f(\mathbf{J}|\alpha)$ is wrong? (Ex: real galaxy has streams/substructure...)

II. Schwarzschild's method

- Pick a trial potential Φ
- Launch orbit from each observed $(\mathbf{x}_n^{\star}, \mathbf{v}_n^{\star})$ in Φ
- ermm..

All Φ equally likely!

Standard methods don't work (well)

I. Parametrized DF

- Guess some form for $f(\mathbf{J}|\alpha)$, parametrised by α
- Try a Φ
- Marginalise or fiddle parameters α
- Assign likelihood to Φ.

But what if your guess for $f(\mathbf{J}|\alpha)$ is wrong? (Ex: real galaxy has streams/substructure...)

II. Schwarzschild's method

- Pick a trial potential Φ
- Launch orbit from each observed $(\mathbf{x}_n^{\star}, \mathbf{v}_n^{\star})$ in Φ
- ermm..

All Φ equally likely!

CBE is

$$\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} = \frac{\partial \Phi}{\partial \mathbf{x}} \cdot \frac{\partial f}{\partial \mathbf{v}}.$$

If we knew $f(\mathbf{x}, \mathbf{v})$ perfectly then moment-based methods (Jeans, virial) would cough up Φ very easily.

But

All we have is *N* stars drawn from *f*:

- We don't know $f(\mathbf{x}, \mathbf{v})$ itself,
- nor do we know its moments particularly well!
- Want to avoid taking derivatives of moments, or solving awkward implicit relns among moments.

Another way of tackling the problem

Motivation: Shirley, there must be a Bayesian version of the (generalised) virial theorem...

(unreadable arXiv:1303.6099)

Broad-brush restatement of problem (JM, arXiv:1303.6099)

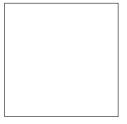
Problem:

- We have two unknown functions, $\Phi(\mathbf{x})$ and $f(\mathbf{x}, \mathbf{v})$.
- Our data *D* is a discrete sample of *f*, but want Φ .
- Jeans: $f(\mathbf{x}, \mathbf{v}) = f(\mathbf{J})$, where $\mathbf{J} = \mathbf{J}(\mathbf{x}, \mathbf{v} | \Phi)$.

Solution: Marginalise *f*!

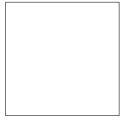
• But how to represent it?

new idea alert!



Have: unit stick of starlight + big action-space box.

- Snap off a chunk π_k of starlight
 - Draw $\beta_k \sim \text{Beta}(1, \alpha)$ and set $\pi_k = \beta_k \times [\text{stick length}]$
- It is chunk π_k into the action-space box
 - where it lands given by uniform prior in J
- 3 Smear out this π_k in action space:
 - Spike of height π_k at some point \mathbf{J}_{land}
 - convolve with Gaussian having randomly chosen inverse covariance matrix drawn from uninformative prior (Wishart)
- Apply steps 1–4 to remainder of stick.

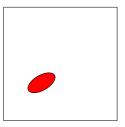


Have: unit stick of starlight + big action-space box.

- **1** Snap off a chunk π_k of starlight
 - Draw β_k ~ Beta(1, α) and set π_k = β_k × [stick length]
- It is chunk π_k into the action-space box
 - where it lands given by uniform prior in J
- ③ Smear out this π_k in action space:
 - Spike of height π_k at some point \mathbf{J}_{land}
 - convolve with Gaussian having randomly chosen inverse covariance matrix drawn from uninformative prior (Wishart)
- Apply steps 1–4 to remainder of stick.

Have: unit stick of starlight + big action-space box.

- **1** Snap off a chunk π_k of starlight
 - Draw β_k ~ Beta(1, α) and set π_k = β_k × [stick length]
- 2 Toss this chunk π_k into the action-space box
 - where it lands given by uniform prior in J
- 3 Smear out this π_k in action space:
 - Spike of height π_k at some point \mathbf{J}_{land}
 - convolve with Gaussian having randomly chosen inverse covariance matrix drawn from uninformative prior (Wishart)
- Apply steps 1–4 to remainder of stick.



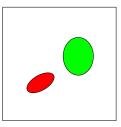
Have: unit stick of starlight + big action-space box.

Snap off a chunk π_k of starlight

Draw β_k ~ Beta(1, α) and set π_k = β_k × [stick length]

- 2 Toss this chunk π_k into the action-space box
 - where it lands given by uniform prior in J
- Smear out this π_k in action space:
 - Spike of height π_k at some point \mathbf{J}_{land}
 - convolve with Gaussian having randomly chosen inverse covariance matrix drawn from uninformative prior (Wishart)

Apply steps 1–4 to remainder of stick.



Have: unit stick of starlight + big action-space box.

1 Snap off a chunk π_k of starlight

Draw β_k ~ Beta(1, α) and set π_k = β_k × [stick length]

- 2 Toss this chunk π_k into the action-space box
 - where it lands given by uniform prior in J
- Smear out this π_k in action space:
 - Spike of height π_k at some point J_{land}
 - convolve with Gaussian having randomly chosen inverse covariance matrix drawn from uninformative prior (Wishart)
- Apply steps 1–4 to remainder of stick.

Dirichlet process mixture = distribution of blobs

DF is composed of K blobs ("streams"?), each having

- some probability mass π_k , (k = 1...K)
- centred on some J_k, and
- with inverse covariance Λ_k (size/shape).

Single free hyperparameter α controls clumpiness of DF.

Different ways of thinking about Dirichlet process:

- Stick-breaking construction
- Chinese Restuarant process
- I Limit of Dirichlet distribution as cell size \rightarrow 0.

Natural way of representing distribution over distributions (i.e., prior on DF).

Dirichlet process mixture = distribution of blobs

DF is composed of K blobs ("streams"?), each having

- some probability mass π_k , (k = 1...K)
- centred on some J_k, and
- with inverse covariance Λ_k (size/shape).

Single free hyperparameter α controls clumpiness of DF.

Different ways of thinking about Dirichlet process:

- Stick-breaking construction
- Chinese Restuarant process
- I Limit of Dirichlet distribution as cell size \rightarrow 0.

Natural way of representing distribution over distributions (i.e., prior on DF).

How to apply it to constraining Φ

Suppose we have a big list of potentials Φ to try. Given a trial Φ , each $(\mathbf{x}_n^*, \mathbf{v}_n^*) \rightarrow (\mathbf{J}_n^*, \theta_n^*)$. Then given a DF $f(\mathbf{J})$ the likelihood is simply

$$\mathbf{p}(D|\Phi,f)=\prod_{n=1}^N f(\mathbf{J}_n^{\star}).$$

Easy! Sum $p(D|\Phi, f)$ over all *f* generated by the stick-breaking procedure! Obtain **marginalised likelihood** $p(D|\Phi)$.

$$p(D|\Phi) = p(\mathbf{J}_{1}^{\star}, ..., \mathbf{J}_{N}^{\star})$$
$$= \sum_{f} p(D|\Phi, f) = \int dp(f) \prod_{n=1}^{N} f(\mathbf{J}_{n}^{\star})$$
$$= \text{ginormous sum over partitions of } N \text{ period}$$

NB: $p(D|\Phi)$ depends only on how the J_n^* are distributed!

How to apply it to constraining Φ

Suppose we have a big list of potentials Φ to try. Given a trial Φ , each $(\mathbf{x}_n^*, \mathbf{v}_n^*) \rightarrow (\mathbf{J}_n^*, \theta_n^*)$. Then given a DF $f(\mathbf{J})$ the likelihood is simply

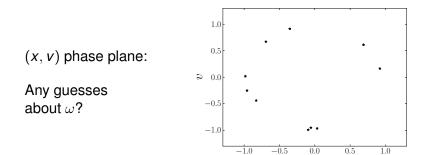
$$p(D|\Phi, f) = \prod_{n=1}^{N} f(\mathbf{J}_{n}^{\star}).$$

Easy! Sum $p(D|\Phi, f)$ over all *f* generated by the stick-breaking procedure! Obtain **marginalised likelihood** $p(D|\Phi)$.

$$p(D|\Phi) = p(\mathbf{J}_{1}^{\star}, ..., \mathbf{J}_{N}^{\star})$$
$$= \sum_{f} p(D|\Phi, f) = \int dp(f) \prod_{n=1}^{N} f(\mathbf{J}_{n}^{\star})$$
$$= \text{ginormous sum over partitions of } N \text{ points}$$

NB: $p(D|\Phi)$ depends only on how the J_n^* are distributed!

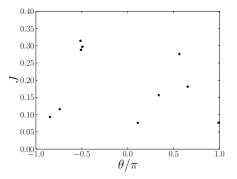
Ptles moving in 1d SHO potential, $\Phi(x) = \frac{1}{2}\omega^2 x^2$.



x

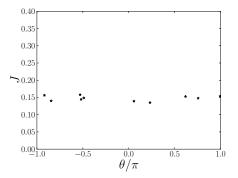
Ptles moving in 1d SHO potential, $\Phi(x) = \frac{1}{2}\omega^2 x^2$.

Different choices of ω give different (J, θ) distns: $\omega = 0.5$



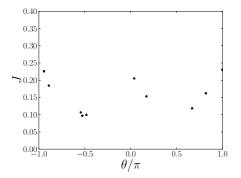
Ptles moving in 1d SHO potential, $\Phi(x) = \frac{1}{2}\omega^2 x^2$.

Different choices of ω give different (J, θ) distns: $\omega = 1$

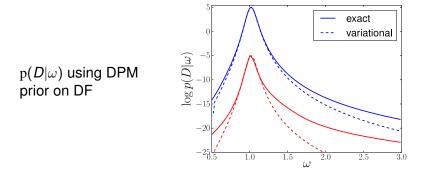


Ptles moving in 1d SHO potential, $\Phi(x) = \frac{1}{2}\omega^2 x^2$.

Different choices of ω give different (J, θ) distns: $\omega = 1.5$



Ptles moving in 1d SHO potential, $\Phi(x) = \frac{1}{2}\omega^2 x^2$.



 $p(D|\Phi)$ is biggest for Φ that make J distn "sharpest": - DPM naturally "likes" sharply peaked, clumpy DFs!

Plot shows two different schemes for calculating $p(D|\Phi)$.

Aside: relation to "minimum entropy" idea

(Peñarrubia, Koposov, Walker 2012, also Helmi talk)

A galaxy's entropy,

$$S[f] = -\int f \log f \,\mathrm{d}^3 \mathbf{x} \,\mathrm{d}^3 \mathbf{v},$$

is *independent* of the assumed potential Φ .

We may average the DF over angles in an assumed Φ :

$$ar{f}(\mathbf{J}) = rac{1}{(2\pi)^3} \int f(\mathbf{J}, heta) \mathrm{d}^3 heta.$$

Note that:

- $\bar{f} = f$ if assumed Φ is true potential (because θ flat)
- $S[\bar{f}] \ge S[f]$ because S[f] indep of Φ .
- So, correct Φ minimises entropy of orbit-avgd DF.

Aside: relation to "minimum entropy" idea (Peñarrubia, Koposov, Walker 2012, also Helmi talk)

A galaxy's entropy,

$$S[f] = -\int f \log f \,\mathrm{d}^3 \mathbf{x} \,\mathrm{d}^3 \mathbf{v},$$

is *independent* of the assumed potential Φ . We may average the DF over angles in an assumed Φ :

$$ar{f}(\mathbf{J}) = rac{1}{(2\pi)^3}\int f(\mathbf{J}, \mathbf{ heta})\mathrm{d}^3 \mathbf{ heta}.$$

Note that:

- $\bar{f} = f$ if assumed Φ is true potential (because θ flat)
- $S[\bar{f}] \ge S[f]$ because S[f] indep of Φ .
- So, correct Φ minimises entropy of orbit-avgd DF.

But does it work?

Application to Gaia challenge problems

Apply to (**x**, **v**) from Matt W/Jorge P's spherical models in spherical_df.tar.gz.

I assume a parametrised mass density of the form

$$\rho(\mathbf{r}) = \rho_0 \mathbf{r}^{-\gamma} (\mathbf{1} + \mathbf{r})^{\gamma - 3}.$$

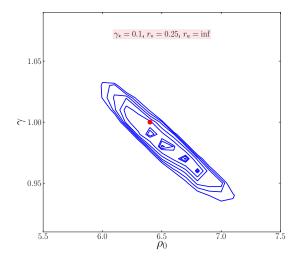
Matt's (\mathbf{x}, \mathbf{v}) "data" come from models having

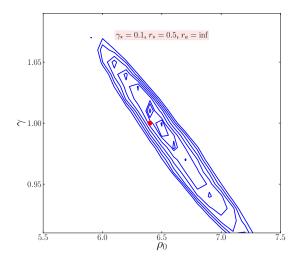
•
$$\rho_0 = 6.4$$
 and $\gamma = 1$, but

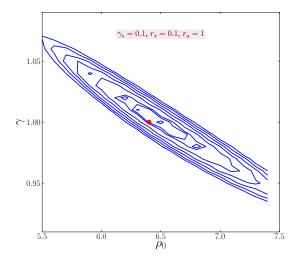
• a range of different stellar DFs (10⁴ stars each).

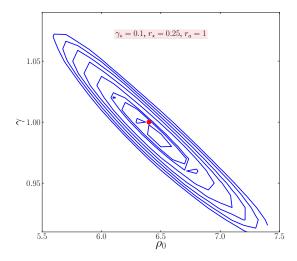
For each dataset *D* I estimate $p(D|\rho_0, \gamma)$ using VB method.

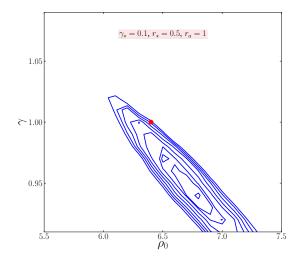
(NB: Following plots updated during the meeting: still not perfect, but VB is an *approximate* method...)

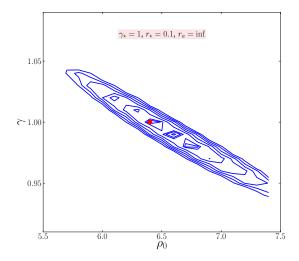


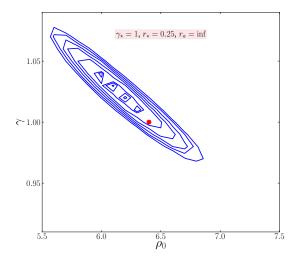


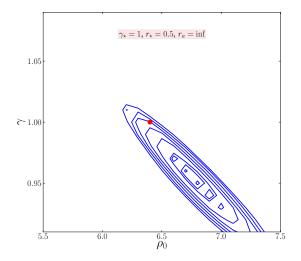


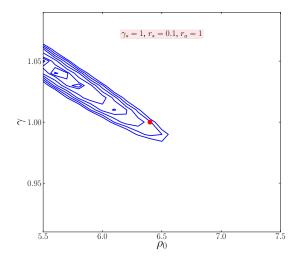


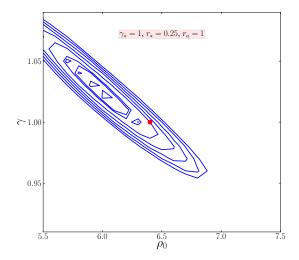


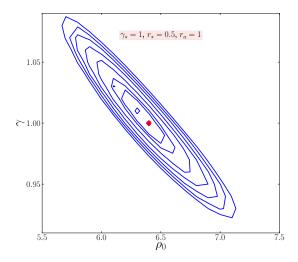












Summary

DPM is sensible¹ way of representing prior on DFs:

- Models the DF "nonparametrically" (in true sense)
 - could view as unholy marriage of ∞-resolution Schwarzschild method in which δ-fn orbits replaced by parametrised DFs
 - (but that might not be helpful)
- Gives broadly correct results for $p(D|\rho_0, \gamma)$
 - exact calculation possible only for $N \leq 10$
 - approximate VB fast, but still room for improvement
 - beguiling interpretation in terms of streams.
- Straightforward in principle to include in likelihood
 - measurement errors (e.g., missing radial vels)
 - survey selection functions.
- Finding an effective practical method to do this is challenging.

¹Worth thinking about: do we *really* want to marginalise?