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Science fiction!

“superGaia”: Gaia w/o observational errors, selection effects.

An idealised problem

superGaia gives us (x,v) for every star in the Galaxy.
What’s the gravitational potential in which they move?

Assume: collisionless, ∂t = 0→ 2 functions + Jeans thm

Φ(x) , f (x,v) = f (J), J = J(x, v|Φ)

Want this {
observations are a discrete
realisation of this
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Standard methods don’t work (well)

I. Parametrized DF
Guess some form for f (J|α), parametrised by α

Try a Φ

Marginalise or fiddle parameters α

Assign likelihood to Φ.
But what if your guess for f (J|α) is wrong?
(Ex: real galaxy has streams/substructure...)

II. Schwarzschild’s method
Pick a trial potential Φ

Launch orbit from each observed (x?n,v?n) in Φ

ermm..
All Φ equally likely!
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Counterpoint
But wait, surely this problem is trivial...?

CBE is
v · ∂f

∂x
=
∂Φ

∂x
· ∂f
∂v
.

If we knew f (x,v) perfectly then moment-based methods
(Jeans, virial) would cough up Φ very easily.

But
All we have is N stars drawn from f :

We don’t know f (x,v) itself,
nor do we know its moments particularly well!
Want to avoid taking derivatives of moments, or solving
awkward implicit relns among moments.



Another way of tackling the problem

Motivation: Shirley, there must be a Bayesian version of the
(generalised) virial theorem...

(unreadable arXiv:1303.6099)

http://uk.arxiv.org/abs/1303.6099


Broad-brush restatement of problem
(JM, arXiv:1303.6099)

Problem:
We have two unknown functions, Φ(x) and f (x,v).
Our data D is a discrete sample of f , but want Φ.
Jeans: f (x,v) = f (J), where J = J(x,v|Φ).

Solution: Marginalise f !
But how to represent it?

new idea alert!

http://uk.arxiv.org/abs/1303.6099


A Dirichlet process mixture model for the DF

Have: unit stick of starlight + big action-space box.
1 Snap off a chunk πk of starlight

Draw βk ∼ Beta(1, α) and set πk = βk × [stick length]

2 Toss this chunk πk into the action-space box
where it lands given by uniform prior in J

3 Smear out this πk in action space:
Spike of height πk at some point Jland
convolve with Gaussian having randomly chosen inverse
covariance matrix drawn from uninformative prior (Wishart)

4 Apply steps 1–4 to remainder of stick.
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Dirichlet process mixture = distribution of blobs

DF is composed of K blobs (“streams”?), each having
some probability mass πk , (k = 1...K )
centred on some Jk , and
with inverse covariance Λk (size/shape).

Single free hyperparameter α controls clumpiness of DF.

Different ways of thinking about Dirichlet process:
1 Stick-breaking construction
2 Chinese Restuarant process
3 Limit of Dirichlet distribution as cell size→ 0.

Natural way of representing distribution over distributions
(i.e., prior on DF).
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How to apply it to constraining Φ

Suppose we have a big list of potentials Φ to try.
Given a trial Φ, each (x?n,v?n)→ (J?n, θ?n).
Then given a DF f (J) the likelihood is simply

p(D|Φ, f ) =
N∏

n=1

f (J?n).

Easy! Sum p(D|Φ, f ) over all f generated by the stick-breaking
procedure! Obtain marginalised likelihood p(D|Φ).

p(D|Φ) = p(J?1, ...,J
?
N)

=
∑

f

p(D|Φ, f ) =

∫
dp(f )

N∏
n=1

f (J?n)

= ginormous sum over partitions of N points

NB: p(D|Φ) depends only on how the J?n are distributed!
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A really really toy problem

Ptles moving in 1d SHO potential, Φ(x) = 1
2ω

2x2.

(x , v) phase plane:

Any guesses
about ω?
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A really really toy problem

Ptles moving in 1d SHO potential, Φ(x) = 1
2ω

2x2.

p(D|ω) using DPM
prior on DF

p(D|Φ) is biggest for Φ that make J distn “sharpest”:
– DPM naturally “likes” sharply peaked, clumpy DFs!

Plot shows two different schemes for calculating p(D|Φ).



Aside: relation to “minimum entropy” idea
(Peñarrubia, Koposov, Walker 2012, also Helmi talk)

A galaxy’s entropy,

S[f ] = −
∫

f log f d3x d3v,

is independent of the assumed potential Φ.
We may average the DF over angles in an assumed Φ:

f̄ (J) =
1

(2π)3

∫
f (J, θ)d3θ.

Note that:
f̄ = f if assumed Φ is true potential (because θ flat)
S[f̄ ] ≥ S[f ] because S[f ] indep of Φ.
So, correct Φ minimises entropy of orbit-avgd DF.
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But does it work?



Application to Gaia challenge problems

Apply to (x,v) from Matt W/Jorge P’s spherical models in
spherical_df.tar.gz.

I assume a parametrised mass density of the form

ρ(r) = ρ0r−γ(1 + r)γ−3.

Matt’s (x,v) “data” come from models having
ρ0 = 6.4 and γ = 1, but
a range of different stellar DFs (104 stars each).

For each dataset D I estimate p(D|ρ0, γ) using VB method.

(NB: Following plots updated during the meeting: still not
perfect, but VB is an approximate method...)



Results: various stellar DFs in NFW potential
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Summary

DPM is sensible1 way of representing prior on DFs:
Models the DF “nonparametrically” (in true sense)

could view as unholy marriage of∞-resolution
Schwarzschild method in which δ-fn orbits replaced by
parametrised DFs
(but that might not be helpful)

Gives broadly correct results for p(D|ρ0, γ)

exact calculation possible only for N ≤ 10
approximate VB fast, but still room for improvement
beguiling interpretation in terms of streams.

Straightforward in principle to include in likelihood
measurement errors (e.g., missing radial vels)
survey selection functions.

Finding an effective practical method to do this is
challenging.

1
Worth thinking about: do we really want to marginalise?


