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There’s more to streams 
than just positions and 
velocities (and 
abundances)



Stream substructure can be used to constrain 
model parameters
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Stream substructure can be used to constrain 
model parameters

Can we see stream 
substructure?

How does it get there?

Can we make use of it?

What does it tell us?
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model parameters



Palomar 5 is a short but prominent globular cluster 
stream in the SDSS. What can we learn from it?

Bonaca, Geha & Kallivayalil (2012)



The Palomar 5 stream shows substructure
Küpper, Balbinot, Bonaca, Hogg, Kroupa & Santiago (in prep.)
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The Palomar 5 stream shows substructure



Some positions along the stream seem to be 
preferred over others
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Stream substructure can be used to constrain 
model parameters



Stream stars have an offset with respect to the cluster 
orbit

Eyre & Binney (2010)
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Stars escape through the Lagrange points and move 
non-linearly along the stream

Clumps in the tidal tails of star clusters 971

Figure 2. Top: effective potential of a star cluster in the corotating frame.
L1 and L2 are the Lagrange points. Bottom: sketch of escaping stars in the
effective potential of a star cluster through the Lagrange points L1 and L2.

energy exceeding the critical value EJ,crit = !eff (L1/L2) can in
principle leave the cluster.

For the effective potential we get at y = 0,

!eff (x, 0) = β2
C − 4

2
#2

Cx2 + !cl(x, 0). (11)

The tidal radius rL is given by the distance of the Lagrange points
to the cluster centre. It is determined by
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where Mcl(rL) is the cluster mass enclosed in |rL|. We find the
well-known equation for the tidal radius:
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, (13)

where we assumed that the full cluster mass is enclosed in |rL|. The
effective potential at the Lagrange points is

!eff (|rL|, 0) = EJ,crit = −3
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The last expression shows that the contribution from the star cluster
potential is twice that of the effective potential of the Galaxy.

A star starting near L1 or L2 with velocity vL escapes at constant
Jacobi energy but with changing energy and angular momentum
until the cluster potential can be neglected. Then the position (x, y)
and velocity v = (vr, vt) in the tidal tail are related to (rL, 0) and vL

by

EJ = !eff (rL, 0) + v2
L

2
= !g,eff (x) + v2

2
, (15)

leading to

x2 = 3r2
L + $(v2)(
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)
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(16)

or

x2

r2
L

= 3 + $(v2)
GMcl/|rL|

(17)

with $(v2) = v2 − v2
L. Stars moving along the equipotential surface

[$(v2) = 0] yield as initial position x =
√

3rL and initial velocity
essentially tangential vt ≈ vL. This approximation fits well with
the radial position of the equipotential surface through L1/L2 at
large distances from the cluster in Fig. 2. Stars moving radially gain
kinetic energy ($v2 > 0) resulting in a larger x and stars starting
tangentially loose kinetic energy ($v2 < 0) leading to a smaller x.

For a continuous mass loss until dissolution it is necessary that
the Jacobi energy of bound stars is lifted above the critical value
EJ,crit, which increases due to the mass loss. There are two physical
effects, which are responsible for a continuous mass loss of the
cluster. The first one is triggered by the mass loss of the cluster
itself. Mass loss on a time-scale large compared to the dynamical
time of the cluster leads to an increase of EJ of the bound stars by

dEJ

dt
= δ!cl

δt
∝ Ṁcl. (18)

However, the critical value EJ,crit increases more slowly, because the
tidal radius decreases with decreasing mass:

d!eff (rL, 0)
dt

∝ Ṁ
2/3
cl . (19)

Initiated by mass loss due to stellar evolution or by a few stars above
EJ,crit mass loss will continue by stars lifted above the critical value.

The second process is dynamical evolution of the cluster due to
two-body encounters. With the relaxation time-scale stars are scat-
tered above EJ,crit and can leave the cluster. The relative importance
of the two effects depends on the mass, number of stars and the
structure of the cluster.

2.3 Dynamic parameters of tidal tail stars

Since the orbits are epicycles perturbed by the acceleration of the
cluster, the connection of the initial position and velocity (rL, vL) to
(x, v) at a later time, when the cluster potential can be neglected, is
very complicated. Here we are interested in the statistics of initial
and final properties of the escaping stars.

For the transition from bound stars to escaped stars, we need to
combine the motion in the frame corotating with the cluster RC, #C

and that in the non-rotating reference frame, where we derived the
properties of the epicycles around R0, #0. For measuring the shape
and kinematics of the tidal tails we stay in the corotating rest frame
centred at the cluster. Therefore, we transform the epicyclic motion
to the corotating frame with respect to RC, #C.

The radial offset $R0 = R0 − RC of the epicentre of a star is
determined by the angular momentum difference $L = L − LC (see
equation A9). Here we need only the first order term of $R0 in $L,
which is

$R0

RC
= 2

β2
C

$L

LC
= 2

β2
CRC

(
2x + vt

#C

)
. (20)

Since the epicycles are counterrotating with respect to the disc
rotation, the relative velocity in the tidal tails is smallest at the peri-
centres (with respect to the cluster motion). These are the locations
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Just, Berczik, Petrov & Ernst (2009)
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Stream substructure tells us something about the 
offset from the streams stars to the cluster orbit 
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Stream substructure tells us something about the 
offset from the streams stars to the cluster orbit 
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Simulation from Küpper, Kroupa, Baumgardt & Heggie (2010)

Star clusters produce a continuous stream of stars 
while they dissolve which creates an epicyclic pattern

2 kpc



Stream overdensities also form in streams of clusters 
on eccentric orbits

X



N-body computations of clusters on eccentric orbits 
show complex behavior of the overdensities
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Simulation from Küpper, Kroupa, Baumgardt & Heggie (2010)
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we want to visualize the 
flow in the stream to get 
the positions of the 
overdensities plus the 
overall evolution of the 
stream
- we want that without 
referring to Nbody sims 

Stream substructure can be used to constrain 
model parameters



A streakline visualizes the flow of particles in a stream 
due to progenitor orbit and surrounding medium



streakline model

Küpper, Lane & Heggie (2012)

N-body model

Streakline models approximate full N-body 
simulations at low computational cost



streakline model
N-body model

Küpper, Lane & Heggie (2012)

Streakline models approximate full N-body 
simulations at low computational cost



Generating a streakline to visualize the flow of stars in 
a stream is simple

Calculate Rtide
for current 
position & 
velocity of 

cluster 
particle

Create test 
particles at 

L1 & L2
with velocity 

offset to 
cluster 
particle Advance 

cluster 
particle and 

all test 
particles in 

the tidal field
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Stream substructure can be used to constrain 
model parameters



We can find a streakline model that reproduces the 
observed substructure

Küpper, Balbinot, Bonaca, Hogg, Kroupa & Santiago (in prep.)



Bayesian modeling of Palomar 5 using emcee

Calculate 
Rtide

for current 
position & 
velocity of 

cluster 
particle

Create 
test 

particles at 
L1 & L2

with 
velocity 
offset to 
cluster 
particle

Advance 
cluster 
particle 

and all test 
particles in 

the tidal 
field

Chose values 
for free 

parameters

Integrate 
cluster orbit 
backwards

Generate 
streakline

Measure 
likelihood of 
observations



Modeling of Palomar 5 constrains halo shape to be 
slightly prolate



Modeling of Palomar 5 stream substructure 
constrains NFW halo parameters



Gives consistent values for circular velocity at solar 
circle and very low acceleration at Pal 5



We get information on additional cluster 
parameters independent of other methods



We get information on additional cluster 
parameters independent of other methods



Gaia’s view of Palomar 5



★ There is more to streams than just positions and velocities

★ Palomar 5 stream shows evidence for epicyclic substructure

★ Streakline models can reproduce substructure pattern

★ Bayesian modeling constrains Palomar 5‘s orbit & Galaxy potential

★ Method enables independent estimates of Palomar 5’s mass & distance

Stream substructure can be used to constrain 
model parameters



Appearance of streaklines depends crucially on the 
choice of radial offset and velocity offset

Küpper, Lane & Heggie (2012)

x

same orbital velocity



same orbital velocity

higher velocity

x

Küpper, Lane & Heggie (2012)

Appearance of streaklines depends crucially on the 
choice of radial offset and velocity offset



same orbital velocity

intermediate velocity

same angular velocity

x

Küpper, Lane & Heggie (2012)

Appearance of streaklines depends crucially on the 
choice of radial offset and velocity offset



same angular velocity
(w/o cluster mass)

same angular velocity
(with cluster mass)

Appearance of streaklines also depends on whether 
the cluster mass is taken into account or not

x

Küpper, Lane & Heggie (2012)


