Orbital Information Encoded in Stream Substructure The example of Palomar 5

Andreas Küpper

There's more to streams than just positions and velocities (and abundances)

Palomar 5 is a short but prominent globular cluster stream in the SDSS. What can we learn from it?

The Palomar 5 stream shows substructure

The Palomar 5 stream shows substructure

Some positions along the stream seem to be preferred over others

Küpper, Balbinot, Bonaca, Hogg, Kroupa & Santiago (in prep.)

RA

Some positions along the stream seem to be preferred over others

Küpper, Balbinot, Bonaca, Hogg, Kroupa & Santiago (in prep.)

Stream stars have an offset with respect to the cluster orbit

Stars escape through the Lagrange points and move non-linearly along the stream

Just, Berczik, Petrov & Ernst (2009)

Star clusters produce a continuous stream of stars while they dissolve which creates an epicyclic pattern

Simulation from Küpper, Kroupa, Baumgardt & Heggie (2010)

Stream overdensities also form in streams of clusters on eccentric orbits

N-body computations of clusters on eccentric orbits show complex behavior of the overdensities

Simulation from Küpper, Kroupa, Baumgardt & Heggie (2010)

A streakline visualizes the flow of particles in a stream due to progenitor orbit and surrounding medium

Streakline models approximate full N-body simulations at low computational cost

Streakline models approximate full N-body simulations at low computational cost

Generating a streakline to visualize the flow of stars in a stream is simple

We can find a streakline model that reproduces the observed substructure

Bayesian modeling of Palomar 5 using emcee

Modeling of Palomar 5 constrains halo shape to be slightly prolate

Modeling of Palomar 5 stream substructure constrains NFW halo parameters

Gives consistent values for circular velocity at solar circle and very low acceleration at Pal 5

We get information on additional cluster parameters independent of other methods

We get information on additional cluster parameters independent of other methods

Gaia's view of Palomar 5

★ There is more to streams than just positions and velocities

★ Palomar 5 stream shows evidence for epicyclic substructure

★ Streakline models can reproduce substructure pattern

★ Bayesian modeling constrains Palomar 5's orbit & Galaxy potential

★ Method enables independent estimates of Palomar 5's mass & distance

Appearance of streaklines depends crucially on the choice of radial offset and velocity offset

Appearance of streaklines depends crucially on the choice of radial offset and velocity offset

Appearance of streaklines depends crucially on the choice of radial offset and velocity offset

Appearance of streaklines also depends on whether the cluster mass is taken into account or not

