Discrete dynamical modelling of ω Centauri

Laura Watkins

Glenn van de Ven, Mark den Brok, Remco van den Bosch

Gaia Challenge, Surrey, 23 August 2013

arXiv:1308.4789

NASA, ESA and the Hubble Heritage Team (STScI/AURA)

NASA, ESA and the Hubble Heritage Team (STScI/AURA)

ω Centauri is interesting

omega centauri intermediate mass black hole

ω Centauri is interesting

- * multiple SPs
- * IMBH?
- * dark matter?

omega centauri dispersion profile

ω Centauri is interesting

- * multiple SPs
- * IMBH?
- * dark matter?
- * lots of good data
- * need dynamical models

binning matches moments

V

$p(v_{obs} \mid model, \delta v_{obs})$

 $m(x',y') p(v_{obs} | model) + (1-m(x',y')) p(v_{obs} | contaminants)$

membership fraction

$$\label{eq:main_cl} \begin{split} m(x',y') &= \frac{dN_{cl}(x',y')}{dN_{cl}(x',y') + dN_{bg}(x',y')} \end{split}$$

 $dN_{cl}(x',y') \propto I(x',y')$ surface brightness

 $dNbg(x',y') = \epsilon dN_0$

$$dN_0 = dN_{cl}(0,0)$$

- * axisymmetric Jeans models
- * anisotropy: $\lambda = -\ln(\langle v_z^2 \rangle / \langle v_R^2 \rangle)$
- * shape: q
- ★ stellar mass-to-light ratio: Y
- * distance: d
- * contamination fraction: ε

+ emcee MCMC Foreman-Mackey et al. (2013)

line-of-sight velocities

proper motions

results

these models are fast

* < 250 stars

* N model moments

* > 250 stars

- * 250 model moments (polar grid)
- * N moment interpolations
- * N likelihoods

these models are fast

what next?

* ω Centauri

- * IMBH?
- * DM halo
- * chemical tagging
- * better background models
- * discrete Schwarzschild
- * Local Group dSphs and GCs
- * Milky Way

- * high quality and quantity data sets in the LG
- * analysis usually involves binning
- * we are implementing discrete modelling of discrete datasets
- * initial study of ω Centauri is encouraging
- * accurate data uncertainties are vital

extra slides

parameter distributions for cleaned dataset

"best" model

fair sampling of models

