This is an old revision of the document!
Table of Contents
Results
Code | Models run | Results .tar.gz file (contains ASCII data) |
---|---|---|
GravLite | All | XXX |
MAMPOSSt | 8 non-tangential (312 cases) | http://www.iap.fr/users/gam/GAIACHALLENGE/mamposst.tar.gz (including ReadMe.txt) |
MAMPOSSt
Presentation (Thursday, Oct 30): in http://www.iap.fr/users/gam/GAIACHALLENGE/Mamon.pdf
MAMPOSSt Plots
MAMPOSSt figures in http://www.iap.fr/users/gam/GAIACHALLENGE/mamposst_figures.tar.gz (9 MB)
PlumCoreIso_1000_1_easy
PlumCoreIso_1000_1_hard
PlumCoreIso_1000_1_vhard
PlumCoreIso_1000_2_easy
PlumCoreIso_1000_2_hard
PlumCoreIso_1000_2_vhard
PlumCoreIso_1000_3_easy
PlumCoreIso_1000_3_hard
PlumCoreIso_1000_3_vhard
PlumCoreIso_100_1_easy
PlumCoreIso_100_1_hard
PlumCoreIso_100_1_vhard
PlumCoreIso_100_2_easy
PlumCoreIso_100_2_hard
PlumCoreIso_100_2_vhard
PlumCoreIso_100_3_easy
PlumCoreIso_100_3_hard
PlumCoreIso_100_3_vhard
PlumCoreIso_100_4_easy
PlumCoreIso_100_4_hard
PlumCoreIso_100_4_vhard
PlumCoreIso_100_5_easy
PlumCoreIso_100_5_hard
PlumCoreIso_100_5_vhard
PlumCoreIso_100_6_easy
PlumCoreIso_100_6_hard
PlumCoreIso_100_6_vhard
PlumCoreIso_100_7_easy
PlumCoreIso_100_7_hard
PlumCoreIso_100_7_vhard
PlumCoreIso_100_8_easy
PlumCoreIso_100_8_hard
PlumCoreIso_100_8_vhard
PlumCoreIso_100_9_easy
PlumCoreIso_100_9_hard
PlumCoreIso_100_9_vhard
PlumCoreIso_100_10_easy
PlumCoreIso_100_10_hard
PlumCoreIso_100_10_vhard
PlumCoreOM_1000_1_easy
PlumCoreOM_1000_1_hard
PlumCoreOM_1000_1_vhard
PlumCoreOM_1000_2_easy
PlumCoreOM_1000_2_hard
PlumCoreOM_1000_2_vhard
PlumCoreOM_1000_3_easy
PlumCoreOM_1000_3_hard
PlumCoreOM_1000_3_vhard
PlumCoreOM_100_1_easy
PlumCoreOM_100_1_hard
PlumCoreOM_100_1_vhard
PlumCoreOM_100_2_easy
PlumCoreOM_100_2_hard
PlumCoreOM_100_2_vhard
PlumCoreOM_100_3_easy
PlumCoreOM_100_3_hard
PlumCoreOM_100_3_vhard
PlumCoreOM_100_4_easy
PlumCoreOM_100_4_hard
PlumCoreOM_100_4_vhard
PlumCoreOM_100_5_easy
PlumCoreOM_100_5_hard
PlumCoreOM_100_5_vhard
DPM mixture of blobs
These models are a development of http://arxiv.org/abs/1303.6099. The marginal likelihood $p(D|\Phi)$ is calculated by representing the DF by an arbitrary number of Gaussians of arbitrary weight/location/covariance in action space and marginalising the parameters describing the Gaussians. So, no assumption is made about the light profile (except that it is axisymmetric) or the orbit anisotropy. The implementation is for now still limited to error-free data though.
The results below assume the correct double power-law form for potential with scale radius held at correct value. Unknown parameters are then the inner slope $\gamma$ and scale densty $\rho_0$.
Results for 100 stars from spherical test model PlumCuspIso
Results for 100 stars from cuspy triaxial test model
Orbit block-superposition (Schwarzschild) models
These use the standard “extended Schwarzschild” approach, but using big blocks of orbits in $(E,L^2)$ (or equiv actions) instead of single orbits. The models are fed $(X,Y,V_X,V_Y)$ from PlumCuspIso with 2% errors in $(V_X,V_Y)$ – and infinite uncertainty in $(Z,V_Z)$
Results for 100 stars: 100x1 blocks (forced isotropy)
Results for 100 stars: 100x10 blocks (anisotropy allowed)
Noise in result is probably due to finite resolution of block DF, plus the deficiency of the maximum-likelihood approach used by such “extended-Schwarzschild” methods. And there might be some implementation errors too.